View : 668 Download: 0

Green tea (-)-epigallocatechin-3-gallate reduces body weight with regulation of multiple genes expression in adipose tissue of diet-induced obese mice

Title
Green tea (-)-epigallocatechin-3-gallate reduces body weight with regulation of multiple genes expression in adipose tissue of diet-induced obese mice
Authors
Lee M.-S.Kim C.-T.Kim Y.
Ewha Authors
김양하
SCOPUS Author ID
김양하scopus
Issue Date
2009
Journal Title
Annals of Nutrition and Metabolism
ISSN
0250-6807JCR Link
Citation
Annals of Nutrition and Metabolism vol. 54, no. 2, pp. 151 - 157
Indexed
SCI; SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
Aims: The aim of this study was to investigate the antiobesity effect of (-)-epigallocatechin-3-gallate (EGCG) in diet-induced obese mice. Methods: Male C57BL/6J mice were fed on a high-fat diet for 8 weeks to induce obesity. Subsequently they were divided into 3 groups and were maintained on a high-fat control diet or high-fat diets supplemented with 0.2 or 0.5% EGCG (w/w) for a further 8 weeks. Changes in the expression of genes related to lipid metabolism and fatty acid oxidation were analyzed in white adipose tissue, together with biometric and blood parameters. Results: Experimental diets supplemented with EGCG resulted in reduction of body weight and mass of various adipose tissues in a dose-dependent manner. EGCG diet also considerably lowered the levels of plasma triglyceride and liver lipid. In the epididymal white adipose tissue of EGCG diet-fed mice, the mRNA levels of adipogenic genes such as peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT enhancer-binding protein-α (C/EBP-α), regulatory element-binding protein-1c (SREBP-1c), adipocyte fatty acid-binding protein (aP2), lipoprotein lipase (LPL) and fatty acid synthase (FAS) were significantly decreased. However, the mRNA levels of carnitine palmitoyl transferase-1 (CPT-1) and uncoupling protein 2 (UCP2), as well as lipolytic genes such as hormone sensitive lipase (HSL) and adipose triglyceride lipase (ATGL), were significantly increased. Conclusion: These results suggest that green tea EGCG effectively reduces adipose tissue mass and ameliorates plasma lipid profiles in high-fat diet-induced obese mice. These effects might be at least partially mediated via regulation of the expression of multiple genes involved in adipogenesis, lipolysis, β-oxidation and thermogenesis in white adipose tissue. © 2009 S. Karger AG, Basel.
DOI
10.1159/000214834
Appears in Collections:
신산업융합대학 > 식품영양학과 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE