View : 578 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.advisor김유리-
dc.contributor.author김예린-
dc.creator김예린-
dc.date.accessioned2022-08-04T16:32:11Z-
dc.date.available2022-08-04T16:32:11Z-
dc.date.issued2022-
dc.identifier.otherOAK-000000191486-
dc.identifier.urihttps://dcollection.ewha.ac.kr/common/orgView/000000191486en_US
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/261952-
dc.description.abstractCancer cachexia is a metabolic disease influencing several organs and represented by depletion of adipose and muscle tissues, causing up to 20% of cancer-related deaths. The fat tissue dysregulations and muscle wasting have been found to be crucial factors in cancer cachexia. They can result in functional damage and diminished quality of life in cancer patients. β-carotene (BC), mainly stored in adipose tissues, is known to affect the body fat and adipose tissue functions. BC also has been previously reported to increase muscle mass and hypertrophy in the muscle of healthy mice. However, its regulatory effects on adipose and muscle tissues in cancer cachexia have not been investigated yet. Therefore, the effects of BC against cancer cachexia were identified using several models in these researches. In Study 1, 6-week-old male BALB/c mice were injected with 3*10^6 CT26 colon cancer cells to induce early caner cachexia and were orally administered with BC at doses of 0.5 or 2 mg/kg for 35 days. The regulatory roles of BC on tumor growth, adipose and muscle weights, and the systemic inflammation were analyzed. In addition, the adipocyte size, lipolysis, and fat browning in subcutaneous fats and gut microbiota were investigated. Using in vitro models, effects of BC on adipogenesis, lipolysis, and energy metabolism were identified as well. As a result, BC supplementations suppressed tumor growth, adipose weight loss, lipolysis and fat browning in subcutaneous fats, hepatic gluconeogenesis, and systemic inflammation in CT26-induced cancer cachexia mouse model. The diversity and composition of gut microbiota were changed in cancer cachexia compared to the control group, while those were restored by the BC supplementations. BC treatments reversed the reduced adipogenesis and dysregulated mitochondrial respiration and glycolysis in preadipocytes co-cultured with colon cancer. In Study 2, 5-week-old male C57BL/6J mice were injected with 1*10^6 Lewis lung carcinoma (LLC) cells to induce late cancer cachexia and were orally supplemented with BC at doses of 4 or 8 mg/kg for 26 days. The effects of BC on muscle atrophy in gastrocnemius muscle were examined. Moreover, roles of BC on the length of myotubes, cytokine levels, muscle differentiation, and muscle atrophy were investigated using C2C12 myoblasts incubated with LLC-conditioned media. As a result, BC treatments restored the LLC CM-induced shortened myotube lengths, down-regulated muscle differentiation, and increased muscle atrophy in C2C12 myoblasts. Using the LLC-induced cancer cachexia model, BC supplementations significantly inhibited the tumor growth, pro-inflammatory cytokines, hepatic gluconeogenesis, muscle weight loss, and grip strength reduction. BC inhibited muscle wasting by restoring the decreased myofiber sizes and by suppressing muscle atrophy and regulated the PI3K/Akt pathway signaling. Taken together, these findings exhibited that BC inhibited cancer cachexia by regulating the metabolic dysfunction of adipose and muscle tissues, gut microbiota, hepatic gluconeogenesis, and systemic inflammation, suggesting that BC can be a potential therapeutic agent for cancer cachexia.;암성 악액질은 여러 개의 인체 장기에 영향을 미치는 대사적 증후군으로, 가장 대표적인 특징으로 지방과 근육 손실이 나타난다. 암성 악액질은 암 환자의 항암 치료 반응, 치료 예후, 삶의 질 등에 부정적인 영향을 미치며, 암 환자 사망 원인의 20%를 차지할 만큼 심각한 문제이다. 지방 조직의 비정상적인 조절과 근육 손실은 암성 악액질 조절의 가장 중요한 두가지 요인이다. 지방과 근육 조직의 손실은 암환자의 기능적 손상과 삶의 질 악화를 유발할 수 있기 때문이다. 따라서, 본 연구는 지방과 근육 조직의 다양한 대사와 관련된 메커니즘에 초점을 맞추었다. 뿐만 아니라, 암성 악액질은 여러 개의 인체 장기가 서로 관여하는 다중 장기 질병이기 때문에, 본 연구는 장내미생물군, 간 포도당신생합성, 체내 염증도 분석하였다. 베타카로틴 (β-carotene)은 체내 지방 기능을 조절한다고 밝혀져 있으며, 체내 지방조직에 주로 저장된다. 또한, 선행 연구를 통해, 베타카로틴이 건강한 마우스의 근육량을 증가시켜 근육 비대를 유도함이 밝혀져 있다. 그러나, 베타카로틴의 암성 악액질에서의 지방과 근육 조직의 조절능력은 현재까지 연구된 바가 없다. 따라서, 본 연구는 다양한 in vitro와 in vivo 암성 악액질 모델 시스템들을 활용하여, 베타카로틴의 투여가 지방과 근육 조직의 비이상적인 대사, 장내 미생물군 조성, 간 포도당신생합성, 체내 염증을 조절하여 암성 악액질을 조절할 수 있는지를 규명하고자 하였다. 베타카로틴의 암성 악액질에서 지방대사에 미치는 영향을 분석하기 위해, 6주령의 수컷 BALB/c 마우스에 3*10^6 개의 CT26 대장암 세포를 피하 주사하여 암성 악액질을 유도한 후, 0.5와 2 mg/kg 농도의 베타카로틴을 35일 동안 구강 투여했다. 베타카로틴의 암성 악액질에서 근육대사에 미치는 영향을 분석하기 위해, 5주령의 수컷 C57BL/6J 마우스에 1*10^6 개의 LLC 폐암 세포를 피하 주사하여 암성 악액질을 유도한 후, 4와 8 mg/kg 농도의 베타카로틴을 26일동안 구강 투여했다. CT26 유도 암성 악액질 마우스 모델에서는, 베타카로틴 투여에 따른 피하지방의 지방구 크기, 지방 분해 및 지방 갈색화 과정과 장내 미생물군 변화에 미치는 영향을 규명했다. CT26과 LLC 유도 암성 악액질 모델에서의 베타카로틴의 종양 부피, 몸무게 및 장기 무게, 체내 염증, 간 포도당신생합성, 지방과 근육 무게 조절 능력을 측정하였다. LLC 유도 암성 악액질 마우스 모델에서는, 베타카로틴 투여에 따른 비복근의 근섬유 크기별 분포와 근육 수축에 미치는 영향을 규명하였다. 또한, CT26 대장암 세포의 배양액을 처리한 3T3-L1 지방세포와 대장암 오가노이드와 공배양을 한 지방세포, 두가지 모델을 활용하여 베타카로틴의 지방 분화, 지방 분해, 에너지 대사에 미치는 영향을 규명하였다. 뿐만 아니라, LLC 폐암 세포의 배양액을 처리한 C2C12 근관세포에서 베타카로틴 처리에 따른 근관세포의 길이, 사이토카인 분비량, 근육 분화, 근육 수축의 변화를 측정하였다. 그 결과, 베타카로틴 처리에 의해 CT26 유도 암성 악액질 마우스 모델에서의 종양 형성, 지방량 손실, 피하 지방에서의 지방 분해와 갈색 지방화 과정, 간 포도당신생합성, 체내 염증이 억제된 효과가 나타났다. 또한, 암성 악액질에서 변화한 장내 미생물의 다양성과 구성이 베타케로틴 투여에 의해 회복되었다. 지방세포와 대장암 세포의 공배양 시스템을 활용하여, CT26 배양액 처리로 인해 변화된 지방세포의 지방분화 능력과 미토콘드리아 호흡과 해당과정이 베타카로틴 처리에 의해 회복되었다. 뿐만 아니라, 베타카로틴 처리가 LLC 배양액 처리로 인해 감소한 C2C12 근관세포 길이와 근육 분화와 증가된 근육 수축의 정상화에 도움을 주었다. 또한, LLC 유도 암성 악액질 마우스 모델에서는, 베타케로틴 처리에 의해 종양 형성, 염증성 사이토카인 분비량, 근육량 손실, 악력 감소가 유의적으로 저해되었다. 베타카로틴이 암성 악액질 마우스 비복근에서 Akt/mTOR 기전 조절을 통해 근섬유 크기 감소 및 근육 수축을 억제함을 밝혔다. 따라서, 본 연구는 베타카로틴이 지방과 근육 조직의 비이상적인 대사와, 장내 미생물군, 간 포도당신생합성, 염증 조절을 통해 암성 악액질을 억제하는 효능을 지님을 처음으로 규명하였으며, 베타카로틴의 암성 악액질의 새로운 치료법 개발에 유용한 과학적 근거자료로 쓰일 수 있을 것이다.-
dc.description.tableofcontentsI. Introduction 1 A. Literature review 1 1. Cancer cachexia and its related metabolism 1 1.1 Cancer cachexia 1 1.2 Cancer cachexia and adipose tissue 4 1.3 Cancer cachexia and muscle tissue 7 1.4 Cancer cachexia and energy metabolism 9 2. Beta-carotene 10 2.1 Beta-carotene and its metabolism and function 10 2.2 Beta-carotene and cancer 13 2.3 Beta-carotene and adipose and muscle tissue metabolism 14 3. Gut microbiota 14 3.1 Gut microbiota and its roles 14 3.2 Gut microbiota and cancer cachexia 15 3.3 Beta-carotene and gut microbiota 16 4. Organoid 17 B. Hypothesis 20 II. Study 1: Beta-carotene suppresses early cancer cachexia by regulating the adipose tissue metabolism and gut microbiota dysregulation 21 A. Introduction 21 B. Materials and Methods 23 1. Cancer cahceixa mouse model 23 2. Histological analysis 24 3. Serum IL-6, TNF-α and non-esterified fatty acid measurement 24 4. Gut microbiota analysis 24 5. Cell culture and reagents 26 6. CT26 and L-WRN conditioned medium collection 26 7. Differentiation of pre-adipocytes 27 8. Colon cancer organoid culture 28 9. Co-culture system of preadipocytes and colon cancer organoids 29 10. Immunofluorescent staining 29 11. Lipid accumulation measurements 30 12. RNA extraction and RT-qPCR 30 13. Metabolic characteristic measurements 31 14. Lactate, glucose uptake and ATP measurement 32 15. Statistical Analysis 34 C Results 35 1.1. Effects of BC on body and organ weights in CT26 cancer-cachexia mouse model 35 1.2. Effects of BC on tumor volume in CT26 cancer-cachexia mouse model 37 1.3. Effects of BC the adipose and muscle weights in CT26 cancer-cachexia mouse model 39 1.4. Effects of BC on the size of subcutaneous fat cells in CT26 cancer-cachexia mouse model 41 2.1. Effects of BC on lipolysis in subcutaneous fats of CT26 cancer-cachexia mouse model 43 2.2. Effects of BC on fat browning in subcutaneous fats of CT26 cancer-cachexia mouse model 45 2.3. Effects of BC on hepatic gluconeogenesis in CT26 cancer-cachexia mouse model 47 2.4. Effects of BC on the systemic inflammation in CT26 cancer-cachexia mouse model 49 3.1. Isolation of patient-derived colon cancer organoids 51 3.2. Effects of BC on BODIPY staining in human preadipocytes co-cultured with colon cancer organoids 53 3.3. Effects of BC on mRNA expressions of adipogenesis-related markers in human preadipocytes co-cultured with colon cancer organoids 55 4.1. Effects of BC on Oil Red O staining assay in 3T3-L1 cells treated with CT26 CM 57 4.2. Effects of BC on mRNA expressions of adipogenesis-related markers in 3T3-L1 cells treated with CT26 CM 59 5.1. Effects of BC on mitochondrial basal respiration in in 3T3-L1 cells treated with CT26 CM 61 5.2. Effects of BC on glycolysis in 3T3-L1 cells treated with CT26 CM 63 5.3. Effects of BC on OCR/ECAR ratio in 3T3-L1 cells treated with CT26 CM 65 5.4. Effects of BC on the ATP production, lactate excretion, and glucose uptake in 3T3-L1 cells treated with CT26 CM 67 6.1. Effects of BC on mitochondrial basal respiration in HCT116 colon cancer cells 69 6.2. Effects of BC on glycolysis in HCT116 colon cancer cells 71 6.3. Effects of BC on OCR/ECAR ratio in HCT116 colon cancer cells 73 6.4. Effects of BC on the ATP production, lactate excretion, and glucose uptake in HCT116 colon cancer cells 75 7.1. Effects of BC on gut microbiota alpha diversity in CT26 cancer-cachexia mouse model 77 7.2. Effects of BC on gut microbiota beta diversity in CT26 cancer-cachexia mouse model 79 7.3. Effects of BC on the relative abundances of specific gut microbiota in CT26 cancer-cachexia mouse model 81 7.4. Effects of BC on the correlation between the diversity/structure of fecal microbiota and cancer cachectic observations in CT26 cancer-cachexia mouse model 84 7.5. Effects of BC on the analysis of the KEGG pathways in CT26 cancer-cachexia mouse model 86 D. Discussion 89 Ⅲ. Study 2: Beta-carotene suppresses late cancer cachexia by regulating the muscle atrophy and PI3K/Akt pathway 101 A. Introduction 101 B. Materials and Methods 104 1. Cancer cachexia mouse model 104 2. Assessment of grip strength 104 3. RNA extraction and RT-qPCR 105 4. Western blotting 105 5. ELISA assays 107 6. Hematoxylin & Eosin (H&E) Staining 107 7. Cell culture and reagents 107 8. LLC conditioned medium collection 107 9. Differentiation of myotubes 107 10. Myotube length assessment 108 11. Cell viability assay 108 12. Statistical Analysis 108 C. Results 110 1.1 Effects of BC on tumor volume in LLC cancer-cachexia mouse model 110 1.2. Effects of BC on the body, organ weights, and food intake in LLC cancer-cachexia mouse model 112 1.3. Effects of BC on grip strength in LLC cancer-cachexia mouse mode 114 1.4. Effects of BC on the systemic inflammation in LLC cancer-cachexia mouse model 116 1.5. Effects of BC on hepatic gluconeogenesis in LLC cancer-cachexia mouse model 118 1.6. Effects of BC on muscle and adipose tissue weights in LLC cancer-cachexia mouse model 120 2.1. Effects of BC on myofiber size distribution in gastrocnemius muscle of LLC-induced cancer cachexia mouse model 122 2.2. Effects of BC on muscle atrophy-related marker in gastrocnemius muscle of LLC-induced cancer cachexia mouse model 124 2.3. Effects of BC on mRNA levels of the muscle stem cell-related marker in in gastrocnemius muscle of LLC-induced cancer cachexia mouse model 126 2.4. Effects of BC on protein expressions of the PI3K/Akt pathway in gastrocnemius muscle of LLC-induced cancer cachexia mouse mode 128 3.1. Effects of BC on the length and transverse diameter of myotube in C2C12 myoblasts treated with LLC CM 130 3.2. Effects of BC on myogenesis and muscle atrophy-related markers in C2C12 myoblasts treated with LLC CM 132 3.3. Effects of BC on the levels of pro-inflammatory cytokines in the conditioned media of C2C12 myoblasts treated with LLC CM 134 3.4. Effects of BC on the cell viability in C2C12 myoblasts treated with LLC CM 136 D. Discussion 138 Ⅳ.General discussion 143 Ⅴ.General conclusion 145 Bibliography 146 Appendix 165 Abstract(in Korean) 170-
dc.formatapplication/pdf-
dc.format.extent4328912 bytes-
dc.languageeng-
dc.publisher이화여자대학교 대학원-
dc.subject.ddc600-
dc.titleBeta-carotene suppresses cancer cachexia by regulating adipose and muscle tissues metabolism-
dc.typeDoctoral Thesis-
dc.format.pagexvii, 172 p.-
dc.identifier.thesisdegreeDoctor-
dc.identifier.major대학원 식품영양학과-
dc.date.awarded2022. 8-
Appears in Collections:
일반대학원 > 식품영양학과 > Theses_Ph.D
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE