View : 747 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.author박진병*
dc.date.accessioned2016-08-28T12:08:45Z-
dc.date.available2016-08-28T12:08:45Z-
dc.date.issued2010*
dc.identifier.issn1359-5113*
dc.identifier.otherOAK-6236*
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/220499-
dc.description.abstractA highly active recombinant whole-cell biocatalyst, Escherichia coli pETAB2/pG-KJE1, was developed for the efficient production of (S)-styrene oxide from styrene. The recombinant E. coli overexpressed styAB the genes of styrene monooxygenase of Pseudomonas putida SN1 and coexpressed the genes encoding chaperones (i.e., GroEL-GroES and DnaK-DnaJ-GrpE). The styrene monooxygenases were produced to ca. 40% of the total soluble proteins, enabling the whole-cell activity of the recombinant of 180 U/g CDW. The high StyAB activity in turn appeared to direct cofactors and molecular oxygen to styrene epoxidation. The product yield on energy source (i.e., glucose) reached ca. 40%. In addition, biotransformation in an organic/aqueous two-liquid phase system allowed the product to accumulate to 400 mM in the organic phase within 6 h, resulting in an average specific and volumetric productivity of 6.4 mmol/g dry cells/h (106 U/g dry cells) and 67 mM/h (1110 U/L aq), respectively, under mild reaction conditions. These results indicated that the high productivity and the high product yield on energy source were driven by the high enzyme activity. Therefore, it was concluded that oxygenase activity of whole-cell biocatalysts is one of the critical factors to determine their catalytic performance. © 2009 Elsevier Ltd. All rights reserved.*
dc.languageEnglish*
dc.titleDevelopment of a recombinant Escherichia coli-based biocatalyst to enable high styrene epoxidation activity with high product yield on energy source*
dc.typeArticle*
dc.relation.issue2*
dc.relation.volume45*
dc.relation.indexSCI*
dc.relation.indexSCIE*
dc.relation.indexSCOPUS*
dc.relation.startpage147*
dc.relation.lastpage152*
dc.relation.journaltitleProcess Biochemistry*
dc.identifier.doi10.1016/j.procbio.2009.08.018*
dc.identifier.wosidWOS:000273897400002*
dc.identifier.scopusid2-s2.0-71249126518*
dc.author.googleBae J.-W.*
dc.author.googleDoo E.-H.*
dc.author.googleShin S.-H.*
dc.author.googleLee S.-G.*
dc.author.googleJeong Y.-J.*
dc.author.googlePark J.-B.*
dc.author.googlePark S.*
dc.contributor.scopusid박진병(15036390700)*
dc.date.modifydate20240322114808*
Appears in Collections:
공과대학 > 식품생명공학과 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE