View : 242 Download: 0

Lactobacillus gasseri BNR17 Supplementation Reduces the Visceral Fat Accumulation and Waist Circumference in Obese Adults: A Randomized, Double-Blind, Placebo-Controlled Trial

Title
Lactobacillus gasseri BNR17 Supplementation Reduces the Visceral Fat Accumulation and Waist Circumference in Obese Adults: A Randomized, Double-Blind, Placebo-Controlled Trial
Authors
Kim J.Yun J.M.Kim M.K.Kwon O.Cho B.
Ewha Authors
권오란
SCOPUS Author ID
권오란scopus
Issue Date
2018
Journal Title
Journal of Medicinal Food
ISSN
1096-620XJCR Link
Citation
Journal of Medicinal Food vol. 21, no. 5, pp. 454 - 461
Keywords
body weightLactobacillus gasseriobesityprobioticsvisceral adipose tissue
Publisher
Mary Ann Liebert Inc.
Indexed
SCIE; SCOPUS; KCI WOS scopus
Document Type
Article
Abstract
Lactobacillus gasseri BNR17 is a probiotic strain isolated from human breast milk. Animal studies reported that BNR17 inhibited increases in body weight and adipose tissue weights. The purpose of this study was to evaluate the antiobesity effects of BNR17 in humans. In a randomized, double-blind, placebo-controlled trial, 90 volunteers aged 20-75 years with body mass index (BMI) from 25 to 35 kg/m2 were randomized to receive a placebo, low-dose BNR (BNR-L, 109 CFU/day), or high-dose BNR (BNR-H, 1010 CFU/day) for 12 weeks. Body weight, BMI, waist and hip circumferences, waist-to-hip ratio, abdominal adipose tissue areas, body fat mass, lean body mass, and biochemical parameters were assessed at the beginning and end of the trial. Visceral adipose tissue (VAT) was significantly decreased in the BNR-H group compared with the placebo group (P = .038). Difference of VAT areas of the BNR-H group compared with the placebo group after 12-week consumption of BNR17 was significant (-21.6 cm2, P = .012). Waist circumferences were significantly decreased in both the BNR-L and BNL-H groups (P = .045 and .012, respectively) compared with the baseline values, but not in the placebo group. Biochemical parameters were not significantly different among the groups. These findings suggest that daily consumption of BNR17 may contribute to reduced visceral fat mass in obese adults. Copyright © 2018, Mary Ann Liebert, Inc. and Korean Society of Food Science and Nutrition 2018.
DOI
10.1089/jmf.2017.3937
Appears in Collections:
신산업융합대학 > 식품영양학과 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE