View : 91 Download: 23

Full metadata record

DC Field Value Language
dc.contributor.author이종락-
dc.date.accessioned2018-11-15T16:30:07Z-
dc.date.available2018-11-15T16:30:07Z-
dc.date.issued2018-
dc.identifier.issn2073-8994-
dc.identifier.otherOAK-23598-
dc.identifier.urihttp://dspace.ewha.ac.kr/handle/2015.oak/246474-
dc.description.abstractWe herein discuss the following elliptic equations: M( integral(RN)integral(RN) vertical bar u(x)-u(y)vertical bar(p)/vertical bar x-y vertical bar(N+ps) dx dy)(-Delta)(p)(s)u + V(x)vertical bar u vertical bar(p-2) u = lambda f(x,u) in R-N, where (-Delta)(p)(s) is the fractional p-Laplacian defined by (-Delta)(p)(s) u(x) = 2 lim(epsilon SE arrow 0 )integral(RN\B epsilon(x)) vertical bar u(x)-u(y)vertical bar(p-2)(u(x)-u(y))/vertical bar x-y vertical bar(N+ps) dy, x is an element of R-N. Here, B-epsilon(x): = {y is an element of R-N: vertical bar x-y vertical bar < epsilon}, V : R-N -> (0, infinity) is a continuous function and f : R-N x R -> R is the Caratheodory function. Furthermore, M : R-0(+)-> R+ is a Kirchhoff-type function. This study has two aims. One is to study the existence of infinitely many large energy solutions for the above problem via the variational methods. In addition, a major point is to obtain the multiplicity results of the weak solutions for our problem under various assumptions on the Kirchhoff function M and the nonlinear term f. The other is to prove the existence of small energy solutions for our problem, in that the sequence of solutions converges to 0 in the L-infinity-norm.-
dc.languageEnglish-
dc.publisherMDPI-
dc.subjectfractional p-Laplacian-
dc.subjectKirchhoff-type equations-
dc.subjectfountain theorem-
dc.subjectmodified functional methods-
dc.subjectMoser iteration method-
dc.titleMultiplicity of Small or Large Energy Solutions for Kirchhoff-Schrodinger-Type Equations Involving the Fractional p-Laplacian in R-N-
dc.typeArticle-
dc.relation.issue10-
dc.relation.volume10-
dc.relation.indexSCIE-
dc.relation.indexSCOPUS-
dc.relation.journaltitleSYMMETRY-BASEL-
dc.identifier.doi10.3390/sym10100436-
dc.identifier.wosidWOS:000448561000016-
dc.identifier.scopusid2-s2.0-85055751918-
dc.author.googleKim, Jae-Myoung-
dc.author.googleKim, Yun-Ho-
dc.author.googleLee, Jongrak-
dc.date.modifydate20190701081002-


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE