View : 768 Download: 365

Full metadata record

DC Field Value Language
dc.contributor.author전건상-
dc.date.accessioned2016-08-29T12:08:31Z-
dc.date.available2016-08-29T12:08:31Z-
dc.date.issued2015-
dc.identifier.issn1098-0121-
dc.identifier.otherOAK-15679-
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/230805-
dc.description.abstractWe examine finite-temperature phase transitions in the two-orbital Hubbard model with different bandwidths by means of the dynamical mean-field theory combined with the continuous-time quantum Monte Carlo method. It is found that there emerges a peculiar slope-reversed first-order Mott transition between the orbital-selective Mott phase and the Mott insulator phase in the presence of Ising-type Hund's coupling. The origin of the slope-reversed phase transition is clarified by the analysis of the temperature dependence of the energy density. It turns out that the increase of Hund's coupling lowers the critical temperature of the slope-reversed Mott transition. Beyond a certain critical value of Hund's coupling the first-order transition turns into a finite-temperature crossover. We also reveal that the orbital-selective Mott phase exhibits frozen local moments in the wide orbital, which is demonstrated by the spin-spin correlation functions. © 2015 American Physical Society.-
dc.languageEnglish-
dc.publisherAmerican Physical Society-
dc.titleSlope-reversed Mott transition in multiorbital systems-
dc.typeArticle-
dc.relation.issue12-
dc.relation.volume92-
dc.relation.indexSCI-
dc.relation.indexSCIE-
dc.relation.indexSCOPUS-
dc.relation.journaltitlePhysical Review B - Condensed Matter and Materials Physics-
dc.identifier.doi10.1103/PhysRevB.92.125127-
dc.identifier.wosidWOS:000361118600009-
dc.identifier.scopusid2-s2.0-84942456292-
dc.author.googleKim-
dc.author.googleA.J.-
dc.author.googleChoi-
dc.author.googleM.-
dc.author.googleJeon-
dc.author.googleG.S.-
dc.contributor.scopusid전건상(7006259128)-
dc.date.modifydate20230411112311-


qrcode

BROWSE