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Slope-reversed Mott transition in multiorbital systems
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‘We examine finite-temperature phase transitions in the two-orbital Hubbard model with different bandwidths by
means of the dynamical mean-field theory combined with the continuous-time quantum Monte Carlo method. It
is found that there emerges a peculiar slope-reversed first-order Mott transition between the orbital-selective Mott
phase and the Mott insulator phase in the presence of Ising-type Hund’s coupling. The origin of the slope-reversed
phase transition is clarified by the analysis of the temperature dependence of the energy density. It turns out that
the increase of Hund’s coupling lowers the critical temperature of the slope-reversed Mott transition. Beyond
a certain critical value of Hund’s coupling the first-order transition turns into a finite-temperature crossover.
We also reveal that the orbital-selective Mott phase exhibits frozen local moments in the wide orbital, which is

demonstrated by the spin-spin correlation functions.
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I. INTRODUCTION

Coexistence of strongly and weakly correlated electrons
has been one of the intriguing subjects in condensed matter
physics. Materials in which more than one orbital is active near
the Fermi level have exhibited interesting properties and their
main origin is believed to be the coexistence of electrons with
different degrees of correlations [1]. In the multiorbital system,
correlations between electrons and Hund’s coupling have been
known to show rich phenomena in the presence of the orbital
degree of freedom. In cases where the degeneracy between
active orbitals is lifted by the difference of their bandwidths
[2-12] or crystal-field splitting [13—17], the degree of effective
correlations in each orbital becomes different. One prominent
consequence of different degrees of correlations is the orbital-
selective Mott phase (OSMP), where electrons in some orbitals
are totally localized due to the Mott physics while other
orbitals are still occupied by itinerant electrons [18,19]. Here
Hund’s coupling tends to intensify the difference between
orbitals [1,20].

The coexistence of strongly and weakly correlated electrons
is also believed to play an important role in two-dimensional
materials including strong spatial fluctuations [21,22]. In such
a system spatial correlations and corresponding momentum-
space anisotropy of correlations are the key elements to
host the coexistence [23]. Thanks to the recent numerical
developments in the cluster dynamical mean-field theory
(DMFT) [24-30], it is known that spatial fluctuations modify
qualitatively finite-temperature behaviors of the correlation-
driven metal-insulator transitions; this has been revealed by the
comparison with the single-site DMFT [31] neglecting spatial
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fluctuations. Spatial correlations turn out to reduce greatly the
ground-state entropy of the paramagnetic Mott insulator (MI)
at low temperatures and accordingly, the itinerant bad metallic
phase dominates in the region of relatively high temperatures
near the transition [32].

It is natural to anticipate such prominent changes in finite-
temperature transitions for multiorbital systems. In spite of
extensive studies [10-15,33-36], the temperature dependence
of the transitions in the two-orbital Hubbard model still lacks
a thorough understanding. The principal purpose of this work
is to investigate the finite-temperature nature of the transitions
in two-orbital systems with emphasis on the effects of Hund’s
coupling.

In this paper we investigate the two-orbital Hubbard model
by the DMFT combined with the continuous-time quantum
Monte Carlo (CTQMC) method. In the model we find the
slope-reversed Mott transition in the presence of Ising-type
Hund’s coupling for two orbitals of different bandwidths. We
also observe that the drastic changes in the phase transition
between the OSMP and the MI phase are induced by the
variation of the Hund’s coupling strength. The analysis of
the hysteresis behavior of local magnetic moments determines
the location of the critical end points, which reveals that the
critical temperature tends to reduce as the Hund’s coupling is
increased. Eventually the hysteretic behavior disappears at a
certain value of Hund’s coupling and the system exhibits only
a crossover between the OSMP and the MI phase. We also
compute the spin-spin correlation function for both orbitals
and find the formation of the local frozen moments for itinerant
wide-orbital electrons in the OSMP.

This paper is organized as follows: In Sec. II we give a
brief description of the two-orbital Hubbard model and the
numerical method. Section III is devoted to the presentation of
the numerical results, which include finite-temperature phase
diagrams, spectral functions, hysteresis of local magnetic
moments, energy densities, effects of Hund’s coupling, and
spin-spin correlation functions. The results are summarized in
Sec. IV.

©2015 American Physical Society


http://dx.doi.org/10.1103/PhysRevB.92.125127

AARAM J. KIM, MOOYOUNG CHOI, AND GUN SANG JEON

II. MODEL AND METHODS

We consider the Hamiltonian

H=— Y 1a(lyeliue +HE) = 1Y Ay

(ij)a(r ino
FU D iy + DU = 800105 (1)
io ioo’

for two orbitals « =1 and 2. Here, ¢, (6jw) is the
annihilation (creation) operator of an electron with spin
o at site i and orbital «. In each orbital electrons move
on the infinite-dimensional Bethe lattice corresponding to a
noninteracting semicircular density of states (DOS), ,og(a)) =
(2/7t D)\/1 — (w/Dy)?, with the half bandwidth D, = 21,
and interact with each other via the intra- and interorbital
Coulomb interactions U and U’ and Hund’s coupling J. We
investigate the half-filled system with chemical potential u =
3U/2 —5J/2,and also choose D, =2D;and U' = U — 2J.
The half bandwidth D; of the narrow orbital is taken as an
energy unit throughout this paper. Here we disregard spin-flip
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and pair-hopping terms, which is appropriate for the study
of the anisotropic Hund’s coupling model. Our model serves
as a natural generalization of the Ising-spin Kondo lattice
model which is useful in interpreting experimental results
for various materials, e.g., pyrochlore oxides [37,38] and
URu,Si, [39]. Such physics is understood mainly in terms
of the large-anisotropy effects on the localized moments.

We employ the DMFT combined with the CTQMC method
through the hybridization expansion algorithm [14,40,41].
Typically, the statistical sampling of 108 Monte Carlo steps
is performed, which turns out to be sufficient for statistically
reliable numerical results.

III. RESULTS

A. Finite-temperature phase diagram

The main result of this work is the emergence of a
slope-reversed Mott transition accompanied by the drastic
change in the behavior of finite-temperature phase transitions,
which is driven by the variation in Hund’s coupling. Figure 1
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FIG. 1. (Color online) Phase diagrams on the plane of temperature 7 and interaction strength U for (a) J =U/32, (b) J = U/16,
(¢) J=U/8, and (d) J = U/4. In (a) and (b), open and filled symbols correspond to lower and upper transition interaction strengths,
respectively. The transitions for narrow and wide orbitals are denoted by (blue) squares and (red) circles, respectively. The inset in (a) exhibits
transition interaction strengths of the single-orbital Hubbard model. In (c) and (d) (blue) open squares and (blue) filled squares represent lower
and upper transition interaction strengths, respectively, of the narrow orbital transition and (red) filled circles the phase boundary within the
crossover region between the OSMP and the MI phase. The (black) pluses [+] as well as the dashed line represent the result of finite-temperature
ED (Ref. [12]) while that of zero-temperature ED (Ref. [6]) is represented by (black) crosses [x]. The results from the HF-QMC method in
Refs. [10] and [33] are marked by a (black) open triangle and asterisks [*], respectively. The diamonds represent the critical end points of the

corresponding first-order transitions.
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shows phase diagrams on the temperature versus interaction
strength plane for various Hund’s coupling strengths. In the
presence of orbital degrees of freedom, generally, we have two
successive phase transitions, one from the Fermi-liquid (FL)
phase to the OSMP and the other from the OSMP to the MI
phase. The transition between the FL phase and the OSMP
inherits the shape and energy scale of the coexistence region
in the single-orbital model. In Figs. 1(a) and 1(b), on the
other hand, the coexistence region of the OSMP-to-MI phase
transition is quite interesting. First of all, the slope of the
phase-transition line is opposite to that in the single-orbital
case shown in the inset of Fig. 1(a). The slope-reversed Mott
transition was reported in the two-dimensional systems and
its origin was attributed to spatial modulations [32]. Here it is
noted that our system is an infinite-dimensional one without
any spatial fluctuations. We can also find that the critical
temperature associated with the slope-reversed transition is
considerably enhanced.

The effects of Hund’s coupling are rather drastic on
the slope-reversed Mott transition. When we increase the
Hund’s coupling strength, the slope-reversed Mott transition
becomes a finite-temperature crossover, implying a contin-
uous transition at zero temperature. A similar change in
the zero-temperature transition was reported in an effective
low-energy model [42]; our result reveals that the zero-
temperature result reflects the change from the slope-reversed
transition to a crossover at finite temperatures. In addition,
the region of the OSMP, which is present between the
two transitions, becomes wider for larger Hund’s coupling
strength, from which we can infer that Hund’s coupling
plays the role of a “band decoupler” [20]. It is also found
that for very small Hund’s coupling strength, J = U/32, the
coexistence regions of the two transitions overlap significantly
with each other. In Fig. 1(d) we also plot the existing
results obtained from exact diagonalization (ED) [6,12]
and Hirsch-Fye quantum Monte Carlo (HF-QMC) [10,33],
which are reasonably consistent with our numerical
results.

The reversed slope of the phase-transition line is a distinc-
tive feature. In a conventional Mott transition the localized MI
phase dominates the itinerant FL. phase in the region of high
temperatures near the phase transition; this is mainly due to
the extensive entropic contribution of the MI phase compared
with the very small ground-state entropy in the FL phase.
Similarly to the slope-reversed transition in two-dimensional
systems, the origin of which is the significant entropy reduction
of the MI phase by the short-range correlations [32], the
slope-reversed Mott transition in the two-orbital system can
be understood in terms of the entropy of the MI phase:
It is expected to reduce considerably through ferromagnetic
correlations between electrons in different orbitals by Hund’s
coupling. Another important aspect in the two-orbital system
is that instead of the FL phase, the OSMP competes with the
MI phase near the transition. The OSMP, in which electrons
are partly localized, has higher entropy than the FL, and
accordingly it is more likely to dominate the MI phase at
high temperatures to yield the reversed slope of the transition
line. We will give a detailed analysis in a later subsection,
where the temperature dependence of the energy density is
discussed.
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FIG. 2. (Color online) Spectral functions calculated via the max-
imum entropy method [(a) to (c)] and imaginary-part self-energies
of wide-orbital electrons [(d) to (f)] at T = 1/200 for J/U = 1/16.
From top to bottom, the interaction strength corresponds to U = 3.00
[(a) and (d)], 3.60 [(b) and (e)], and 4.00 [(c) and (f)]. In (a)
to (c), the (blue) solid and the (red) dashed lines represent the
spectral functions of narrow and wide orbitals, respectively. For
comparison, the noninteracting density of states, marked with the
(black) dot-dashed line, is also shown in (a) both orbitals and (b)
wide orbital.

B. Spectral function and self-energy

The local spectral function of each orbital, which can be
evaluated via an analytic continuation to the real-frequency do-
main by the maximum entropy method (MEM), characterizes
conveniently the feature of each phase in the phase diagram. In
the left panel of Fig. 2, the spectral functions of three different
phases are shown for J/ = U/16.Inthe FL phase with U = 3.0,
the spectral function exhibits clearly a coherent peak, which
satisfies the Luttinger theorem. On the other hand, the coherent
peak disappears and Mott gaps develop for both orbitals
in the MI phase. For the intermediate interaction strength
corresponding to OSMP, the narrow orbital is gapped while
the wide one still remains itinerant. It is remarkable that the
spectral function of the wide orbital deviates substantially from
the noninteracting DOS at the Fermi level. The violation of the
Luttinger theorem implies the finite lifetime of wide-orbital
electrons at the Fermi level. The finite-scattering amplitude
of the wide-orbital electron at the Fermi level can be verified
by the finite offset in the imaginary part of the self-energy, as
shown in Fig. 2(e). Similar evidence was also reported for the
non-Fermi-liquid nature of the OSMP which crosses over to
the MI phase [35,36].

C. Local magnetic moments

The first-order transition between the OSMP and the MI
phase is demonstrated by the hysteresis behavior of physical
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FIG. 3. (Color online) (a) Squared magnetic moments of wide-
orbital electron as a function of the interaction strength at various
temperatures for J/U = 1/16. From top to bottom, corresponding
temperatures are 7 = 1/33,1/40,1/50,1/67,1/100, and 1/200. For
better comparison, the data for 7 = 1/40,1/50,1/67,1/100, and
1/200 are shifted downward by 0.02,0.04,0.06,0.08, and 0.10,
respectively. Lines are guides to the eye. (b) Maximum differences
of the squared magnetic moments between two solutions in the
coexistence region at given temperatures. The solid line corresponds
to the least-squares fit of the data. The critical temperature 7~ is
estimated by the 7 '-axis cut of the extrapolated line, which is denoted
by the (red) dashed arrow. (c) Interaction strength U, at which the
difference reaches the maximum. The critical interaction strength U
is estimated by the the extrapolation of the least-squares fit [(blue)
solid line] to the critical temperature [(red) vertical dashed arrow].

quantities such as the local magnetic moment. In Fig. 3(a)
we plot the local magnetic moment of the wide orbital as a
function of U for different temperatures. As the interaction
strength is increased, electrons become more localized and
the average local moment increases monotonically. Over a
finite region of the interaction strength we can observe the
hysteresis of the local spin magnetic moment, which implies
the coexistence of the two phases. As shown in Fig. 3, we
can estimate two transition interaction strengths U] and
UZ from the minimum and the maximum values of U,
respectively, showing the coexistence. The coexistence region
shifts to the stronger interaction region with the increase
of the temperature, resulting in the reversed slope of the
phase-transition line.

Using the above hysteresis, we can also estimate the
position of the critical end point of the slope-reversed Mott
transition. From the numerical data, we obtain the maximum
difference of the local moments for the two solutions (MI
phase and OSMP) in the coexistence region

8(S222> = Ml}ax [(SZZZ)MI - (Sz22>OSMP] 2
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FIG. 4. (Color online) Total energy density as a function of tem-
perature with J/U = 1/16 for three different interaction strengths
U = (a) 3.0, (b) 3.6, and (c¢) 5.0, which correspond to the FL phase,
the OSMP, and the MI phase, respectively. The inset in (a) exhibits
T? behavior of the Fermi-liquid phase at low temperatures.

at each temperature. In the plot of 8(832) as a function of T,
the T-axis cut gives the critical temperature 7,”, as shown in
Fig. 3(b). The hysteresis data provide the interaction strength
Unmax, Where § (SZZZ) reaches the maximum, and the extrapolated
value of Upax toT = T gives the interaction strength U of
the critical end point. [See Fig. 3(c)]. We have thus determined
the location of the critical end points for both first-order
transitions, which are plotted in Fig. 1.

D. Origin of slope-reversed Mott transitions

The investigation of the temperature dependence of the total
energy density sheds light on the origin of the slope-reversed
transitions between the OSMP and MI phase. Figure 4 repre-
sents the total energy density ¢ as a function of temperature
for the three phases, where ¢ is defined to be

! .
= N<H+,U«ana> 3)

iao

with N being the number of lattice sites.

In the localized MI phase the total energy density is nearly
constant, which reflects the fact that the entropy is insensitive
to the temperature at low temperatures. On the other hand,
the itinerant FL phase gives a monotonic increase in the
total energy density with the increase of the temperature. As
shown in the inset, the increasing behavior is consistent with
T? behavior at low temperatures. Interestingly, in the OSMP
the total energy density also increases as the temperature is
increased as in the FL phase. Such an increase in eosmp
makes the OSMP more favorable compared with the MI
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FIG. 5. (Color online) (a) Schematic representation of the
ground-state energy densities of the OSMP and the MI phase, which
are represented by the (blue) solid and the (red) dashed lines,
respectively. U denotes the transition interaction strength at zero
temperature. (b) Variations of the free-energy densities of the OSMP
[(blue) solid line] and the MI phase [(red) dashed line] for U > U
as the temperature increases. Phase transition from the MI phase to
the OSMP occurs at 7,7 only for U > Ug,. The inset displays the
resulting transition temperature as a function of U, which reproduces
well the slope-reversed Mott phase transition.

phase through the additional contribution to the entropy at
finite temperatures. Here it is noted that the temperature
dependence in the OSMP shows the superlinear behavior,
eosmp(T) =~ ATY with y > 1.

We can also see that the residual entropy of the ground state
is In 2 per site in the OSMP and the MI phase. (Note that the
Boltzmann constant has been absorbed in the temperature 7T').
In the OSMP, only the electrons in narrow orbitals are localized
and the degree of freedom for their spins gives the residual
entropy In2. In the MI phase, on the other hand, electrons
in both narrow and wide orbitals are localized. Nevertheless,
the Ising-type Hund’s coupling makes the ground state of the
local Hamiltonian be still twofold degenerate, composed of
[1: 1) and |{; | ), where |o; B) describes the state with a spin-«
electron in the narrow orbital and a spin- electron in the wide
orbital.

Based on these results, we can construct a generic phase
boundary between the OSMP and the MI phase. Suppose a
zero-temperature quantum phase transition between the OSMP
and the MI phase takes place at U = U, where the ground-
state energies of two phases cross, as illustrated in Fig. 5(a).
We use the relation

T / /
S(T) = s(T = 0)+/ AT’ de(T’) )

o T’ dT’
to estimate the entropy density s(7") at low temperatures. The

resulting temperature dependencies of the free-energy density
for the two phases are given in the form

Ay
y —1

fvr = ggmi — Tn2. (6)

Both phases have the same residual entropies while the OSMP
has additional free-energy gain, shown in the third term of
Eq. (5). This contribution originates from the superlinear
temperature dependence of the energy density and the cor-
responding entropy gain in the OSMP at finite temperatures.
ForU < Uj,, foswmp is always lower than fyy since €, osmp <
ggMm1- For U > UJ, on the other hand, &, osmp > &, M1 and

Sfosmp = €g.0smp — T'In2 — T?, )
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there occurs a phase transition at the temperature 7, given
by

T; [V m_ )}w ™)
p Ay €g,0SMP — €g MI .
Below T, the MI phase has lower free energy while
the increase of temperature above 7, induces a transition
to the OSMP phase. Near the zero-temperature transition
interaction strength U7, the ground-state energy difference
£g.MI — £g,0sMp 18 expected to be linearly proportional to
U — Uj,, resulting in the following dependence of the tran-
sition temperature T, ~ (U — UZ)"/7. The inset of Fig. 5(b)
represents a generic phase transition line between the OSMP
and the MI phase, which turns out to be slope-reversed.
The resulting phase transition line also reproduces well the
sublinear dependence of 7,7 on U — U5, which is observed
in Figs. 1(a) and 1(b).

E. Effects of Hund’s coupling

In Fig. 6 we summarize the effects of Hund’s coupling
on the transitions by plotting various transition interaction
strengths versus J/U at T = 1/200, which is the lowest
temperature considered. For J/U = 1/64, the system appears
to undergo a single transition without the OSMP. For larger
values of J/U, we can observe two separate transitions, and
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FIG. 6. (Color online) Phase diagram on the plane of the inter-
action strength U and the Hund’s coupling strength J/U at the
temperature 7 = 1/200. Filled and open (blue) squares indicate upper
(Uz) and lower (U ) transition interaction strengths, respectively, of
the narrow-orbital transition. For J/U < 0.1, the (red) filled and open
circles represent upper (UZ3) and lower (U)) transition interaction
strengths of the wide-orbital transition. For J/U > 0.1, the crossover
points between the OSMP and the MI phase are marked by the (red)
filled circles. Lines are guides to the eye. The transition interaction
strengths for the narrow and the wide orbitals, which are estimated
in the limit J > t,, are represented by (green) dotted and (blue)
dash-dotted lines, respectively. The transition interaction strength for
J = 0is also marked by a (black) asterisk. Inset: Critical temperature
of the wide-orbital transition versus J/U.
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the region of OSMP expands gradually with the increase of
J/U. It is also notable that the critical interaction strengths
associated with both orbitals tend to decrease as Hund’s
coupling grows.

Following the Hubbard criterion for the Mott transition,
which is extended for the multiorbital models [1,6], we can
simply estimate critical interaction strength. In the extremely
localized atomic limit (#, = 0), the charge excitation gap is
given by

Agom = [Eg(N + 1) — Eg(N)] — [E¢(N) — Eg(N — 1]
={1+J/U)U, ®)

where E,(n) is the ground-state energy with n electrons. The
gap is reduced by the introduction of the kinetic energy,
and at the critical interaction strength the reduced gap
vanishes:

0= Aatom - W, (9)

where W is the estimate of the average kinetic energy. For
J < t, the charge excitations in both orbitals are hybridized
with each other. Accordingly, the single Mott transition
arises in this limit. The charge excitations in both orbitals
make contribution to the kinetic energy, yielding the estimate
2+/D? + D3 for the average kinetic energy; this results in
the enhanced critical interaction strength. In the opposite
limit J > t,, in contrast, orbital fluctuations are strongly
suppressed and charge excitations in the two orbitals are not
hybridized with each other. The average kinetic energy of the
orbital « reduces to the bare bandwidth 2D,, leading to the
two transition interaction strengths

) 2D,
Ur = ——, (10)
1+J/U
y 2D,
Ur =2 (11)
1+J/U

which generally decrease with J/U.

The above estimates of the transition interaction strengths
are qualitatively consistent with our numerical data. The
Hund’s coupling decouples the excitations in two differ-
ent orbitals, and the transition interaction strengths of the
two orbitals begin to be separated as the Hund’s coupling
strength is raised. The corresponding OSMP region becomes
enlarged in the phase diagram. Hund’s coupling thus plays
the role of “band decoupler.”” The interpolation between
J =0 and the limit of J > ¢, clearly shows that the
transition interaction strength is a decreasing function of
J/U. This is a characteristic of the half-filled system and
different behaviors in general fillings were reported in several
works [1,20,43-45].

The inset of Fig. 6 shows that the critical temperature 7,”
of the wide-orbital first-order transition reduces as J/U is
increased. Above a certain value of J/U, which turns out
to be between 1/16 and 1/8, we cannot find the transition
down to T = 1/200, the lowest temperature considered, only
to observe crossover phenomena. We presume that the critical
temperature of the Mott transition continues to diminish
as J/U increases and eventually becomes zero between

PHYSICAL REVIEW B 92, 125127 (2015)
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FIG. 7. (Color online) Imaginary-time dependence of the spin-
spin correlation function at 7 = 1/200 with J = U/16 for (a) the
narrow and (b) the wide orbitals. From bottom to top, the interaction
strength is given by U = 3.1, 3.3, 3.6, 3.8, and 4.0.

J/U =1/16 and 1/8; this explains the drastic change in
transition nature from the first-order to crossover.

F. Spin-spin correlation function

We next investigate the spin-spin correlation function

C(r) = (S3(1)S3(0)) (12)

for orbital « = 1,2. The spin-spin correlation function can
give a signal for the formation of the frozen local magnetic
moment. The long-term memory in the correlation function
is proportional to the magnitude of frozen moments. Figure 7
represents the spin-spin correlation function of the narrow and
the wide orbitals at 7 = 1/200 for J = U/16 and various
interaction strengths.

In the FL phase, C g’?( 1) for both orbitals shows 1/72 scaling
for imaginary time t sufficiently far from both 0 and 8. In the
OSMP, however, we can find the formation of the frozen local
moment in the itinerant wide orbital (o« = 2), which exhibits
the long-term memory in C gzs)(r). (See the datafor U = 3.6).In
comparison with the moment of the narrow orbital, that of the
wide orbital is not fully developed in magnitude. Via the second
transition, the frozen moment of wide orbital is fully developed
as well, and the system enters the MI phase. In the OSMP, we
presume that not only the local moment of the narrow orbital
but also the frozen moment of the wide orbital can enhance the
scattering amplitude of itinerant electrons in the wide orbital,
which is observed in Fig. 2(e). This itinerant phase in the wide
orbital is a simple example of “frozen-moment” metal at half
filling. Similar phases were observed at other fillings [14,46].

The local spin susceptibility, defined to be

B
e = /0 dT(S3(1)S2(0)), (13)

is also shown in Fig. 8. Two successive first-order transitions
are clearly observed. The intermediate OSMP has moderate
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FIG. 8. (Color online) Local spin susceptibility as a function of
interaction strength at 7 = 1/200 with J = U/16. The data for the
narrow and the wide orbitals are marked by (blue) squares and (red)
circles, respectively.

values of xl(ozc) , which provides another signature of frozen local

moment. Such two-stage saturation of the local susceptibility
was reported earlier and Hund’s coupling was also emphasized
as an origin of the formation of the local moments in itinerant
components [47].

PHYSICAL REVIEW B 92, 125127 (2015)

IV. CONCLUSION

We have found the slope-reversed Mott transition in the
two-orbital Hubbard model with Ising-type Hund’s coupling,
in which two orbitals have different bandwidths. The reversed
slope of the phase-transition line between the OSMP and the
MI phase can be understood in terms of entropy contributions
which are closely related to the anisotropy in the Hund’s
coupling. The analysis of the temperature dependence of the
energy densities together with the residual entropy has given
a successful explanation of a generic slope-reversed transition
between the OSMP and the MI phase. We have also observed
drastic changes in transition nature between the OSMP and
the MI phase as the Hund’s coupling strength is varied. As the
Hund’s coupling strength increases, the first-order transition
turns into a finite-temperature crossover, implying a quantum
phase transition at zero temperature. Such a drastic change in
the transition nature is apparently induced by the diminishing
critical temperature of the first-order transition between the
OSMP and the MI phase. Finally, the frozen local moments
have been observed for the wide orbital in the OSMP.
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