View : 260 Download: 0

Construction of heterostructure interface with FeNi2S4 and CoFe nanowires as an efficient bifunctional electrocatalyst for overall water splitting and urea electrolysis

Title
Construction of heterostructure interface with FeNi2S4 and CoFe nanowires as an efficient bifunctional electrocatalyst for overall water splitting and urea electrolysis
Authors
Maheskumar, VelusamySaravanakumar, KarunamoorthyYea, YeonjiYoon, YeominPark, Chang Min
Ewha Authors
윤여민
SCOPUS Author ID
윤여민scopus
Issue Date
2023
Journal Title
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
ISSN
0360-3199JCR Link

1879-3487JCR Link
Citation
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY vol. 48, no. 13, pp. 5080 - 5094
Keywords
FeNi 2 S (4)CoFe nanowireUrea electrooxidationOverall water splitting
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Indexed
SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
The design of high-performance non-noble-metal-based electrocatalysts for electro-oxidation reactions involving splitting of water molecule for energy and environmental applications is the need of the hour. In this study, we report the electrocatalytic performance of a nanocomposite catalyst of FeNi2S4 nanoparticles/CoFe nanowires supported on nickel foam that was prepared by a simple hydrothermal method. The electrocatalyst has several advantages, such as the nanocomposite structure, relatively high electrical conductivity, and synergistic effect between FeNi2S4 and CoFe. These characteristics enhanced the catalytic efficiency of FeNi2S4/CoFe electrode, gaining small overpotentials of 380 and 207 mV for oxygen and hydrogen evolution reactions, respectively, at a current density of 100 mA cm-2. The charge transfer processes are significantly improved by the electron pairs from FeNi2S4 and CoFe, as well as by the enhanced active sites at the electrode -electrolyte interface and their bonding interactions. The electrooxidation of urea was also explored, which showed a lower overpotential of 230 mV to reach 100 mA cm(-2) current density. Interestingly, FeNi2S4/CoFe was successfully employed as cathode and anode for urea-assisted water electrolysis, utilizing 1.56 V to produce 10 mA cm(-2) current density, which is approximately 160 mV below that for water electrolysis, thus verifying the lower energy consumption during electrolysis. These results indicate that nanoparticle and nanowire composite catalysts can be used for wastewater treatment and green energy production applications.(c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
DOI
10.1016/j.ijhydene.2022.10.278
Appears in Collections:
공과대학 > 환경공학과 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE