View : 404 Download: 0

In Situ Defect Engineering Route to Optimize the Cationic Redox Activity of Layered Double Hydroxide Nanosheet via Strong Electronic Coupling with Holey Substrate

Title
In Situ Defect Engineering Route to Optimize the Cationic Redox Activity of Layered Double Hydroxide Nanosheet via Strong Electronic Coupling with Holey Substrate
Authors
Jin X.Lee T.Tamakloe W.Patil S.B.Soon A.Kang Y.-M.Hwang S.-J.
Ewha Authors
Sharad Bandu Patil
SCOPUS Author ID
Sharad Bandu Patilscopus
Issue Date
2022
Journal Title
Advanced Science
ISSN
2198-3844JCR Link
Citation
Advanced Science vol. 9, no. 1
Publisher
John Wiley and Sons Inc
Indexed
SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
A defect engineering of inorganic solids garners great deal of research activities because of its high efficacy to optimize diverse energy-related functionalities of nanostructured materials. In this study, a novel in situ defect engineering route to maximize electrocatalytic redox activity of inorganic nanosheet is developed by using holey nanostructured substrate with strong interfacial electronic coupling. Density functional theory calculations and in situ spectroscopic analyses confirm that efficient interfacial charge transfer takes place between holey TiN and Ni−Fe-layered double hydroxide (LDH), leading to the feedback formation of nitrogen vacancies and a maximization of cation redox activity. The holey TiN−LDH nanohybrid is found to exhibit a superior functionality as an oxygen electrocatalyst and electrode for Li−O2 batteries compared to its non-holey homologues. The great impact of hybridization-driven vacancy introduction on the electrochemical performance originates from an efficient electrochemical activation of both Fe and Ni ions during electrocatalytic process, a reinforcement of interfacial electronic coupling, an increase in electrochemical active sites, and an improvement in electrocatalysis/charge-transfer kinetics. © 2021 The Authors. Advanced Science published by Wiley-VCH GmbH
DOI
10.1002/advs.202103368
Appears in Collections:
ETC > ETC
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE