View : 42 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.author곽철광-
dc.date.accessioned2021-11-16T16:30:54Z-
dc.date.available2021-11-16T16:30:54Z-
dc.date.issued2021-
dc.identifier.issn1424-3199-
dc.identifier.issn1424-3202-
dc.identifier.otherOAK-30499-
dc.identifier.uriD:/dspace/dspace55/handle/2015.oak/259497-
dc.description.abstractA nonlinear Schrodinger equation (NLS) on a periodic box can be discretized as a discrete nonlinear Schrodinger equation (DNLS) on a periodic cubic lattice, which is a system of finitely many ordinary differential equations. We show that in two spatial dimensions, solutions to the DNLS converge strongly in L-2 to those of the NLS as the grid size h > 0 approaches zero. As a result, the effectiveness of the finite difference method (FDM) is justified for the two-dimensional periodic NLS.-
dc.languageEnglish-
dc.publisherSPRINGER BASEL AG-
dc.subjectPeriodic nonlinear Schrodinger equation-
dc.subjectUniform Strichartz estimate-
dc.subjectContinuum limit-
dc.titleFinite difference scheme for two-dimensional periodic nonlinear Schrodinger equations-
dc.typeArticle-
dc.relation.issue1-
dc.relation.volume21-
dc.relation.indexSCIE-
dc.relation.indexSCOPUS-
dc.relation.startpage391-
dc.relation.lastpage418-
dc.relation.journaltitleJOURNAL OF EVOLUTION EQUATIONS-
dc.identifier.doi10.1007/s00028-020-00585-y-
dc.identifier.wosidWOS:000559841800001-
dc.author.googleHong, Younghun-
dc.author.googleKwak, Chulkwang-
dc.author.googleNakamura, Shohei-
dc.author.googleYang, Changhun-
dc.contributor.scopusid곽철광(55832871300)-
dc.date.modifydate20211116090940-
Appears in Collections:
자연과학대학 > 수학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE