View : 696 Download: 0

Step-By-Step Atomic Insights into Structural Reordering from 2D to 3D MoS2

Title
Step-By-Step Atomic Insights into Structural Reordering from 2D to 3D MoS2
Authors
Inani, HeenaShin, Dong HoonMadsen, JacobJeong, HyunJeongKwon, Min HeeMcEvoy, NiallSusi, TomaMangler, ClemensLee, Sang WookMustonen, KimmoKotakoski, Jani
Ewha Authors
이상욱
SCOPUS Author ID
이상욱scopus
Issue Date
2021
Journal Title
ADVANCED FUNCTIONAL MATERIALS
ISSN
1616-301XJCR Link

1616-3028JCR Link
Citation
ADVANCED FUNCTIONAL MATERIALS vol. 31, no. 13
Keywords
in situ joule heatingscanning transmission electron microscopyheterostructures
Publisher
WILEY-V C H VERLAG GMBH
Indexed
SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
Vertically stacked low-dimensional heterostructures are outstanding systems both for exploring fundamental physics and creating new devices. Due to nanometer-scale building blocks, atomic scale phenomena become for them of fundamental importance, including during device operation. These can be accessed in situ in aberration-corrected scanning transmission electron microscopy (STEM) experiments. Here, the dynamics of a graphene-MoS2 heterostructure are studied under Joule heating, where the graphene serves as a high temperature atomically thin and electron transparent "hot plate" for the MoS2. Structural dynamics and evolution of the system are shown at the atomic scale, demonstrating that at the highest temperatures (estimated to exceed 2000 K), the continuous 2D MoS2 transforms into separated 3D nanocrystals, initiated by sulfur vacancy creation and migration followed by formation of voids and clustering at their edges. The resulting nanocrystals exhibit predominantly hexagonal shapes with the 2H and hybrid (2H/3R, 3R/TZ) polytypes. The observed morphology of the crystals is further discussed during and after the transformation, as well as their different edge configurations and stability under electron irradiation. These observations of MoS2 at extreme temperatures provide insights into the operation of devices based on graphene/MoS2 heterostructures and ultimately may help device fabrication techniques to create MoS2-based nanostructures, for example, in hydrogen evolution reaction applications.
DOI
10.1002/adfm.202008395
Appears in Collections:
자연과학대학 > 물리학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE