View : 678 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.advisor손아정-
dc.contributor.author진효원-
dc.creator진효원-
dc.date.accessioned2021-01-25T16:30:20Z-
dc.date.available2021-01-25T16:30:20Z-
dc.date.issued2021-
dc.identifier.otherOAK-000000173172-
dc.identifier.urihttp://dcollection.ewha.ac.kr/common/orgView/000000173172en_US
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/256101-
dc.description.abstractThe ultimate goal of this study is to apply biosensor technologies to environmental samples. In order to apply biosensor technologies to actual environmental samples, it is important to understand the interactions with various substances existing in the environmental samples and to eliminate the inhibition phenomena caused by these substances. Therefore, the inhibitory factors were analyzed in environmental samples for the gene quantification method (i.e., NanoGene assay) and examined the mechanisms. As a result, Mg2+ showed a unique and interesting tendency depending on its concentration. At higher concentration of Mg2+, the gene quantification was over-estimated. At lower and environmental relevant concentration of Mg2+, the gene quantification was inhibited (under-estimated). Over-estimation of gene quantity with Mg2+ at the concentrations of 10-3 M or higher was observed and this is because Mg2+ may serve as a bridge between MB-QD565-probe DNA and QD655-signaling DNA complexes during the NanoGene assay. It was confirmed by Fourier transform infrared spectroscopy (FT-IR), zeta potential, and scanning electron microscope (SEM). On the other hand, the inhibition phenomenon (under-estimation of gene quantification) was observed at a concentration of 10-3 M or less and it might be due to a non-specific reaction caused by the electrical binding between Mg2+ and DNA. Circular dichroism (CD) and zeta potential analyses indicated Mg2+ can cause the conformational change and the subsequent aggregation of DNA. A pretreatment apparatus employing the electrical discharge with submerged liquid anode has been developed and used for Mg2+ inhibited samples prior to DNA hybridization. Electrical discharge apparatus creates a cold plasma around the sample, resulting in the generation of massive electron clouds and ionized species. It was hypothesized that those rapidly available electrons and ionized species can alter the nonspecific binding between Mg2+ and DNA, which hinders DNA hybridization and the subsequent gene quantification by the NanoGene assay. The inhibition by Mg2+ to the DNA hybridization during the NanoGene assay was overcome by the electrical discharge treatment (2 – 4 min) prior to the DNA hybridization. % fluorescence has changed back to almost 100 % fluorescence without Mg2+ inhibition, which shows the compatible or better recovery compared to EDTA chelation. CD and zeta potential analysis also indicated electrical discharge treatment may possibly cause the dispersion of DNA-Mg2+ aggregation, resulting in the suitable proximity for DNA hybridization. In summary, the main inhibition mechanisms between magnesium ions and the elements constituting the NanoGene assay were identified, and the following mitigation was suggested. It is expected that not only the analysis results of the NanoGene assay can be obtained more accurately, but also development and application of environmental samples in the field of biosensors can be promoted. ;본 연구의 최종 목표는 바이오센서 기술의 환경 시료 적용이다. 바이오센서 기술을 실제 환경 시료에 적용시키기 위해서는 환경 시료 내에 존재하는 다양한 물질들과의 상호작용을 이해하고 이러한 물질들로 인해 발생되는 저해 현상을 없애는 것이 중요하다. 따라서 본 연구에서는 유전자 정량 바이오센서 (나노진 기법) 기술에서의 환경시료 속 저해 인자들을 분석하고 그 기작을 연구하였다. 본 연구에서는 마그네슘 이온이 나노진 기법에서 농도에 따라 특이적 경향성을 보이는 것을 발견하였으며, 10-3 M 농도를 기준으로 상반된 두 가지 경향성에 대한 기작을 살펴보았다. 10-3 M이상의 농도에서 발견되는 이상 현상인 과상향 측정은 마그네슘 이온이 유전자 혼성화 과정에서 유전자 복합체끼리의 결합을 유도하는 기작을 일으키기 때문으로 밝혔으며, 이를 푸리에 변환 적외선 분광도계 (FT-IR), 제타포텐셜, 전자현미경 등을 통해 결과를 뒷받침하였다. 10-3 M 이하의 농도에서 발견되는 저해 현상은 마그네슘 이온과 DNA와의 전기적 결합으로 인한 비특이적 반응이 주요 저해 기작이라는 것을 발견하였으며, 이러한 저해 현상을 미세 전류 방출 기기를 개발하여 해결하였다. 또한 이를 원평광 이색성 (Circualr Dichroism)과 제타포텐셜 등을 이용해 그 결과를 뒷받침하였다. 결론적으로 유전자 혼성화 과정에서의 저해 현상에 대한 기작 연구를 통해 마그네슘 이온과 DNA와의 주요 반응 기작을 파악함으로써 나노진 기법의 분석 결과를 보다 정확하게 얻을 수 있을 뿐만 아니라, 유전자 혼성화 과정을 거치는 바이오센서 분야에서의 발전 및 환경시료 적용을 도모할 수 있을 것으로 기대한다.-
dc.description.tableofcontentsCHAPTER I 1 Introduction 1 1.1. Background 1 1.2. Objectives of the Study 3 CHAPTER II 4 Literature review 4 2.1. NanoGene assay 4 2.1.1. Gene quantification method NanoGene assay 4 2.1.2. Environmental applications of the NanoGene assay 9 2.1.3. Characteristics of the NanoGene assay 10 2.2. Environmental inhibitors in gene quantification methods 15 2.2.1. Ubiquitous existence of inhibitors in the environment 15 2.2.2. Binding mechanisms of DNA with divalent cations 16 CHAPTER III 19 Mechanistic studies of effects for divalent magnesium ions in the NanoGene assay 19 3.1. Introduction 19 3.2. Materials and Methods 22 3.2.1. Preparation of divalent cations solution 22 3.2.2. The NanoGene assay 23 3.2.3. Preparation of target DNA for both ssDNA and dsDNA 24 3.2.4. Fourier Transform Infrared Spectroscopy (FT-IR) 25 3.2.5. Vulnerability mechanism of the NanoGene assay by Mg2+ 26 3.2.6. High Resolution Field Emission Scanning Electron Microscopy (HR FE-SEM) 28 3.3. Results and Discussion 29 3.3.1. Effect of high Mg2+ to gene quantification via the NanoGene assay 29 3.3.2. Effect of other cations to gene quantification via the NanoGene assay 31 3.3.3. Effects of high Mg2+ concentration to DNA 34 3.3.4. Mechanisms of Mg2+ in the NanoGene assay 37 3.3.5. Microscopic observation 41 3.4. Conclusion of Chapter III 48 CHAPTER IV 50 A simple reagent-less approach using electrical discharge mitigates magnesium ion inhibition of DNA hybridization in a NanoGene assay 50 4.1. Introduction 50 4.2. Materials and Methods 53 4.2.1. Optimization of NanoGene assay: Incubation method 53 4.2.2. Standard curve for the NanoGene assay 54 4.2.3. Inhibition of the NanoGene assay in the presence of Mg2+ and Ca2+ 57 4.2.4. Design & operation of the electrical discharge setup 58 4.2.5. Electrical characterization of the electrical discharge setup 60 4.2.6. Mitigation of Mg2+ inhibition by electrical discharge and EDTA 60 4.2.7. Circular dichroism (CD) analysis 61 4.2.8. Zeta potential measurement 62 4.3. Results and Discussion 63 4.3.1. Electrical characterization of electrical discharge 63 4.3.2. Optimization of the NanoGene assay: Incubation method 65 4.3.3. Standard curve for the NanoGene assay 69 4.3.4. Mg2+ inhibition in the NanoGene assay 69 4.3.5. Effects of Ca2+ in the NanoGene assay 70 4.3.6. Conformational change of target DNA in the presence of Mg2+ 72 4.3.7. Zeta potential analysis 73 4.3.8. Conformational change of DNA after electrical discharge 74 4.3.9. Mitigation of Mg2+ inhibition in the NanoGene assay by electrical discharge 78 4.3.10. Effects of EDTA on the NanoGene assay after inhibition by Mg2+ 81 4.4. Conclusion of Chapter IV 83 CHAPTER V 85 Conclusion and future work 85 5.1. Conclusion 85 5.2. Future work 86 REFERENCES 88 국문초록 96-
dc.formatapplication/pdf-
dc.format.extent4148476 bytes-
dc.languageeng-
dc.publisher이화여자대학교 대학원-
dc.subject.ddc600-
dc.titleMechanistic Studies on Magnesium Ion Influencing Biosensor Technologies-
dc.typeMaster's Thesis-
dc.title.translated바이오센서의 마그네슘 이온으로 인한 저해 기작 연구-
dc.creator.othernameJin, Hyo Won-
dc.format.pagexi, 96 p.-
dc.identifier.thesisdegreeMaster-
dc.identifier.major대학원 환경공학과-
dc.date.awarded2021. 2-
Appears in Collections:
일반대학원 > 환경공학과 > Theses_Master
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE