View : 851 Download: 0

On the volume power density of radial thermoelectric generators

Title
On the volume power density of radial thermoelectric generators
Authors
Han, MinkyungWee, Daehyun
Ewha Authors
위대현
SCOPUS Author ID
위대현scopus
Issue Date
2020
Journal Title
INTERNATIONAL JOURNAL OF ENERGY RESEARCH
ISSN
0363-907XJCR Link

1099-114XJCR Link
Citation
INTERNATIONAL JOURNAL OF ENERGY RESEARCH vol. 44, no. 7, pp. 6049 - 6057
Keywords
heat transfermaximum powerradial thermoelectric generatorssurface power densityvolume power density
Publisher
WILEY
Indexed
SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
We examine the volume power density of radial thermoelectric generators (TEGs). Radial, or tubular, TEGs have been considered as an alternative to the usual flat-plate TEGs due to its improved geometric match to typical curved heat sources and high surface power density. However, surface power density is not the only important performance index in realistic situations. Especially for TEGs with inorganic materials that have high raw material prices, volume power density can be important as well. In this note, an analytic model of a radial TEG is studied with a numerical trial-and-error approach for investigating its volume power density. At the same time, an alternative, approximate method of estimating the maximum power of the radial TEG is presented. Using these two approaches, we estimate the volume power density of a skutterudite-based radial TEG and compare the results to those of a flat-plate TEG. The volume power density of the radial TEG is significantly lower than that of the flat-plate TEG. For example, our calculation for a representative case with free convection on the cold side shows that the volume power density of the radial TEG will be 107 W/m(3) at best. The result improves with forced convection, and our calculation for a representative case with forced convection on the cold side exhibits the maximum volume power density of 24 100 W/m(3). All these values turn out to be smaller roughly by one order of magnitude than the maximum volume power densities of comparable flatplate TEGs. Such a low volume power density indicates lower economic feasibility of the radial TEG with expensive inorganic thermoelectric materials. This is also explicitly discussed by presenting the high cost per watt of the radial TEG. It is therefore suggested that radial TEGs with less expensive organic materials may be more acceptable than those with inorganic ones.
DOI
10.1002/er.5317
Appears in Collections:
공과대학 > 환경공학과 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE