View : 982 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.advisor손아정-
dc.contributor.author임현정-
dc.creator임현정-
dc.date.accessioned2020-03-30T16:30:33Z-
dc.date.available2020-03-30T16:30:33Z-
dc.date.issued2018-
dc.identifier.otherOAK-000000150948-
dc.identifier.urihttp://dcollection.ewha.ac.kr/common/orgView/000000150948en_US
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/253674-
dc.description.abstractTo address the issues for analysis of man-made chemicals such as endocrine disrupting chemicals (EDCs), various invaluable analytical detection methods have been reported in the last decades. In this study, a fluorescence based aptasensor named as NanoAptamer assay using a set of quantum dots (QDs) and a pair of aptamer-signaling DNA for detection of bisphenol A (BPA) and di-2-ethylhexyl phthalate (DEHP) was developed and validated. Newly designed aptamers (23-, 58-, and 24-mer) for BPA detection were introduced via truncation of the reference aptamer (73-mer). The 24-mer aptamer showed significantly better sensitivity (LOD = 0.17 pg/mL) and selectivity (over 3 BPA analogs) for BPA detection. To further demonstrate the utility of the NanoAptamer assay, suitable experimental conditions for BPA detection were examined in terms of incubation time, temperature, and buffer composition. And a leaching experiment was performed to 20 consumer and household products to demonstrate the capability of the NanoAptamer assay for the detection of BPA as compared to the conventional high performance liquid chromatography. Furthermore, a portable device named as NanoAptamer analyzer was demonstrated for on-site application of this assay. For DEHP detection, newly screened aptamer (60-mer) against DEHP and three truncated aptamers (45-, 28-, and 22-mer) were adopted. The combination of 22-mer aptamer and 12-mer signaling DNA showed the sensitive (LOD = 0.5 pg/mL) and selective (over 8 phthalate analogs) detection toward DEHP. The DEHP detection performance using the laboratory protocol and the NanoAptamer analyzer was examined.;지난 수 십년 동안 내분비계 교란물질 (Endocrine Disrupting Chemicals, EDCs)과 같은 인공적으로 합성된 화학물질들에 대한 문제들이 대두됨에 따라 이들을 검출하고자 하는 각고의 노력들이 이어져 왔다. 본 연구에서는 비스페놀 에이 (Bisphenol A, BPA)와 디-2-에틸헥실 프탈레이트 (Di-2-ethylhexyl phthalate, DEHP)에 높은 민감도와 선택성을 갖는 형광신호 기반의 압타머 센서인 ‘나노압타머 분석법 (NanoAptamer assay)’을 개발하였다. 비스페놀 에이에 대하여 기존의 73-mer 압타머를 참고하여 세 종류의 압타머 (23-, 58-, 24-mer)를 제안하였다. 그 중 24-mer 길이의 압타머가 검출한계 0.17 pg/mL로 좋은 민감도를 보였으며, 비스페놀 에이에 대해 가장 우수한 선택도를 보였다. 더 나아가서, 이 분석법을 수행하기 위한 최적의 조건을 찾기 위해 배양시간, 온도 및 배양액 조건에 대한 연구를 진행하였으며, 실제 소비되는 각종 제품 20가지에 대해 이들로부터 용출 된 비스페놀 에이의 농도를 검출한 바 있다. 이는 고성능액체크로마토그래피와 병행하여 분석능을 평가하였다. 이렇게 개발된 나노압타머 분석법의 현장 적용을 위해 소형화 휴대용 분석장치인 ‘나노압타머 분석기 (NanoAptamer analyzer)’를 제작하였다. 디-2-에틸헥실 프탈레이트 검출을 위해서는 새롭게 발굴된 60-mer 압타머와 절단 압타머 디자인 (45-, 28-, 22-mer)을 제안하였으며 시그널 DNA (12-, 9-. 13-mer)의 디자인 또한 평가하였다. 22-mer 압타머와 12-mer 시그널 DNA의 조합으로 개발된 나노압타머 분석법은 검출한계 0.5 pg/mL의 우수한 분석능을 보였으며, 8종의 기타 프탈레이트에 비해 목적물질에 대한 높은 선택도를 보였다. 또한, 앞서 개발된 나노압타머 분석기에 적용함으로써 실험실 수준 분석법과의 상관도를 평가하였다.-
dc.description.tableofcontentsCHAPTER I 1 Introduction 1 1.1. Background 1 1.2. Objectives of the Study 4 1.3. Organization of the Study 5 CHAPTER II 7 Literature review 7 2.1. Endocrine Disrupting Chemicals (EDCs) 7 2.1.1. Definition of EDCs 7 2.1.2. Bisphenol A (BPA) 13 2.1.3. Di-2-ethylhexyl phthalate (DEHP) 17 2.2. Distribution of EDCs in the Environment 22 2.2.1. Occurrences and fate of BPA 23 2.2.2. Occurrences and fate of DEHP 27 2.3. Detection Methods for EDCs 32 2.3.1. Instrumental analysis 32 2.3.2. Biosensors 35 2.3.3. Other methods 41 2.3.4. Portable detection methods for EDCs analysis 44 CHAPTER III 45 Highly sensitive bisphenol A detection by NanoAptamer assay with truncated aptamer 45 3.1. Introduction 45 3.2. Materials and Methods 49 3.2.1. Design of aptamers and signaling DNA for BPA detection 49 3.2.2. Conformational change by circular dichroism spectropolarimetry 52 3.2.3. Preparation of MB-QDs particle complexes for BPA detection 53 3.2.4. FT-IR analysis 58 3.2.5. Confocal microscope analysis 58 3.2.6. Quenching interference of QD fluorescence by BPA 59 3.2.7. Selectivity of NanoAptamer assay for BPA detection 59 3.2.8. Detection limit of BPA by NanoAptamer assay 60 3.3. Results and Discussion 61 3.3.1. Verification of NanoAptamer assay 61 3.3.2. Sensitivity of NanoAptamer assay for BPA detection 66 3.3.3. Selectivity of NanoAptamer assay for BPA detection 73 3.4. Conclusion 76 CHAPTER IV 77 Quantitative screening for bisphenol A in consumer and household products using NanoAptamer assay 77 4.1. Introduction 77 4.2. Materials and Methods 80 4.2.1. Chemicals and the NanoAptamer assay 80 4.2.2. Optimization of assay conditions 82 4.2.3. BPA detection in various water samples 83 4.2.4. BPA detection in consumer and household products 85 4.3. Results and Discussion 89 4.3.1. Optimum assay conditions 89 4.3.2. Sensitivity, specificity, and recovery of BPA detection in various water samples 96 4.3.3. BPA detection in the consumer and household products 99 4.4. Conclusion 104 CHAPTER V 105 Detection of bisphenol A using palm-size NanoAptamer analyzer 105 5.1. Introduction 105 5.2. Materials and Methods 110 5.2.1. Design and operation of NanoAptamer analyzer 110 5.2.2. Baseline characterization of NanoAptamer analyzer 115 5.2.3. Detection and quantification of BPA by NanoAptamer analyzer 117 5.3. Results and Discussion 120 5.3.1. Baseline characterization of NanoAptamer analyzer 120 5.3.2. Detection and quantification of BPA by NanoAptamer analyzer 125 5.4. Conclusion 135 CHAPTER VI 137 Development of NanoAptamer assay and its portable analyzer for the detection of di-2-ethylhexyl phthalate 137 6.1. Introduction 137 6.2. Materials and Methods 141 6.2.1. Aptamers conformational change observation via CD analysis 141 6.2.2. Aptamer truncation and signaling DNA selection for the construction of NanoAptamer assay . 142 6.2.3. Interaction of DEHP binding sites and truncated c aptamer 146 6.2.4. Quantitative detection of DEHP by NanoAptamer assay 146 6.2.5. Design of a portable detection system 151 6.2.6. Quantitative detection of DEHP via NanoAptamer analyzer-beta 152 6.3. Results and Discussion 154 6.3.1. Binding characteristics of PT01 aptamer toward DEHP 154 6.3.2 Determination of aptamer-signaling DNA pair for NanoAptamer assay design 155 6.3.3. Interaction of DEHP binding sites and truncated c aptamer 158 6.3.4. Sensitivity and selectivity of NanoAptamer assay for detection of DEHP 161 6.3.5. DEHP detection by the NanoAptamer assay in the portable system 163 6.4. Conclusion 164 CHAPTER VII 165 Conclusion and future work 165 7.1. Conclusion 165 7.2. Recommendation for Future Work 167 7.2.1. Investigation of binding mechanism between aptamer and targets 167 7.2.2. Improvement of the NanoAptamer assay 168 7.2.3. Improvement of the NanoAptamer analyzer 169 APPENDIX 171 Portable lysis apparatus for rapid single-step DNA extraction of Bacillus subtilis 171 A.1. Introduction 171 A.2. Materials and Methods 173 A.2.1. Design and principle of operation 173 A.2.2. Cell culture 178 A.2.3. Bacterial cell lysis experiment 179 A.2.4. Addition of glass beads and SDS 181 A.3. Results and Discussion 181 A.3.1. Cell lysis by portable lysis apparatus 181 A.3.2. Effect of glass beads in portable lysis apparatus 183 A.3.3. Effect of SDS in portable lysis apparatus 185 A.3.4. Lysing energy efficiency and perspectives for applications 187 A.4. Conclusion 190 REFERENCES 191 국문초록 228-
dc.formatapplication/pdf-
dc.format.extent5069822 bytes-
dc.languageeng-
dc.publisher이화여자대학교 대학원-
dc.subject.ddc600-
dc.titleDevelopment of NanoAptamer assay and portable analyzer for detection of endocrine disrupting chemicals-
dc.typeDoctoral Thesis-
dc.creator.othernameHyun Jeong Lim-
dc.format.pagexxiii, 228 p.-
dc.contributor.examiner이상돈-
dc.contributor.examiner조경숙-
dc.contributor.examiner장암-
dc.contributor.examinerBeelee Chua-
dc.contributor.examiner손아정-
dc.identifier.thesisdegreeDoctor-
dc.identifier.major대학원 환경공학과-
dc.date.awarded2018. 8-
Appears in Collections:
일반대학원 > 환경공학과 > Theses_Ph.D
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE