View : 242 Download: 0

Biofiltration and inhibitory interactions of gaseous benzene, toluene, xylene, and methyl tert-butyl ether

Title
Biofiltration and inhibitory interactions of gaseous benzene, toluene, xylene, and methyl tert-butyl ether
Authors
Shim E.-H.Kim J.Cho K.-S.Ryu H.W.
Ewha Authors
조경숙
SCOPUS Author ID
조경숙scopus
Issue Date
2006
Journal Title
Environmental Science and Technology
ISSN
0013-936XJCR Link
Citation
Environmental Science and Technology vol. 40, no. 9, pp. 3089 - 3094
Indexed
SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
This study evaluated the individual and combined removal capacities of benzene, toluene, and xylene (B, T, and X) in the presence and absence of methyl tert-butyl ether (MTBE) in a polyurethane biofilter inoculated with a BTX-degrading microbial consortium, and further examined their interactive effects in various mixtures. In addition, Polymerase chain reaction-denaturing gradient gel electrophoresis and phylogenetic analysis of 16S rRNA gene sequences were used to compare the microbial community structures found in biofilters exposed to the various gases and gas mixtures. The maximum individual elimination capacities (MECs) of B, T, and X were 200, 238, and 400 g m -3 h-1, respectively. There was no significant elimination of MTBE alone. Addition of MTBE decreased the MECs of B,T, and X to 75, 100, and 300 g m-3 h-1, respectively, indicating that benzene was most strongly inhibited by MTBE. When the three gases were mixed (B + T + X), the removal capacities of individual B, T, and X were 50, 90, and 200 g m-3 h-1, respectively. These capacities decreased to 40, 50, and 100 g m-3 h-1 when MTBE was added to the mix. The MEC of the three-gas mixture (B + T + X) was 340 g m-3 h -1, and that of the four-gas mixture was 200 g m-3 h -1. Although MTBE alone was not degraded by the biofilter, it could be co-metabolically degraded in the presence of toluene, benzene, or xylene with the MECs of 34, 23, and 14 g m-3 h-1, respectively. The microbial community structure analysis revealed that two large groups could be distinguished based on the presence or absence of MTBE, and many of the dominant bacteria in the consortia were closely related to bacteria isolated from aromatic hydrocarbon-contaminated sites and/or oil wastewaters. These findings provide important new insights into biofiltration and may be used to improve the rational design of biofilters for remediation of petroleum gas-contaminated airstreams according to composition types of mixed gases. © 2006 American Chemical Society.
Show the fulltext
DOI
10.1021/es052099l
Appears in Collections:
엘텍공과대학 > 환경공학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE