NL repository
menu
검색
Library
Browse
Communities & Collections
By Date
Authors
Titles
Subject
My Repository
My Account
Receive email updates
Edit Profile
DSpace at EWHA
자연과학대학
수학전공
Journal papers
View : 519 Download: 0
On complex symmetric operator matrices
Title
On complex symmetric operator matrices
Authors
Jung S.
;
Ko E.
;
Lee J.E.
Ewha Authors
고응일
;
이지은
SCOPUS Author ID
고응일
; 이지은
Issue Date
2013
Journal Title
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
Citation
Journal of Mathematical Analysis and Applications vol. 406, no. 2, pp. 373 - 385
Indexed
SCI; SCIE; SCOPUS
Document Type
Article
Abstract
An operator T∈L(H) is said to be complex symmetric if there exists a conjugation J on H such that T=JT*J. In this paper, we find several kinds of complex symmetric operator matrices and examine decomposability of such complex symmetric operator matrices and their applications. In particular, we consider the operator matrix of the form T=(AB0JA*J) where J is a conjugation on H. We show that if A is complex symmetric, then T is decomposable if and only if A is. Furthermore, we provide some conditions so that a-Weyl's theorem holds for the operator matrix T. © 2013.
DOI
10.1016/j.jmaa.2013.04.056
Appears in Collections:
자연과학대학
>
수학전공
>
Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML
Show full item record
Find@EWHA
트윗하기
BROWSE
Communities & Collections
By Date
Authors
Titles
Subject