View : 282 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.author윤정호-
dc.date.accessioned2016-08-28T12:08:37Z-
dc.date.available2016-08-28T12:08:37Z-
dc.date.issued2010-
dc.identifier.issn0168-9274-
dc.identifier.otherOAK-6126-
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/220407-
dc.description.abstractThis paper is concerned with non-stationary interpolatory subdivision schemes that can reproduce a large class of (complex) exponential polynomials. It enables our scheme to exactly reproduce the parametric surfaces such as torus and spheres. The subdivision rules are obtained by using the reproducing property of exponential polynomials which constitute a shift-invariant space S. In this study, we are particularly interested in the schemes based on the known butterfly-shaped stencils, proving that these schemes have the same smoothness and approximation order as the classical Butterfly interpolatory scheme. © 2009 IMACS.-
dc.languageEnglish-
dc.titleNon-stationary subdivision schemes for surface interpolation based on exponential polynomials-
dc.typeArticle-
dc.relation.issue41276-
dc.relation.volume60-
dc.relation.indexSCI-
dc.relation.indexSCIE-
dc.relation.indexSCOPUS-
dc.relation.startpage130-
dc.relation.lastpage141-
dc.relation.journaltitleApplied Numerical Mathematics-
dc.identifier.doi10.1016/j.apnum.2009.10.005-
dc.identifier.wosidWOS:000272696600011-
dc.identifier.scopusid2-s2.0-71549134918-
dc.author.googleLee Y.J.-
dc.author.googleYoon J.-
dc.contributor.scopusid윤정호(57221276460)-
dc.date.modifydate20210804101310-
Appears in Collections:
자연과학대학 > 수학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE