View : 410 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.author이혜숙-
dc.contributor.author이윤진-
dc.date.accessioned2016-08-28T12:08:56Z-
dc.date.available2016-08-28T12:08:56Z-
dc.date.issued2008-
dc.identifier.issn0097-3165-
dc.identifier.otherOAK-4750-
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/219989-
dc.description.abstractWe present an efficient method for constructing self-dual or self-orthogonal codes over finite rings Zpm (or Zm) with p an odd prime and m a positive integer. This is an extension of the previous work [J.-L. Kim, Y. Lee, Euclidean and Hermitian self-dual MDS codes over large finite fields, J. Combin. Theory Ser. A 105 (2004) 79-95] over large finite fields GF (pm) to finite rings Zpm (or Zm). Using this method we construct self-dual or self-orthogonal codes of length at least up to 10 over various finite rings Zpm or Zp q with q an odd prime, where pm = 25, 125, 169, 289 and p q = 65, 85. All the self-dual codes we obtained are MDS, MDR, near MDS, or near MDR codes. © 2007 Elsevier Inc. All rights reserved.-
dc.languageEnglish-
dc.titleConstruction of self-dual codes over finite rings Zpm-
dc.typeArticle-
dc.relation.issue3-
dc.relation.volume115-
dc.relation.indexSCIE-
dc.relation.indexSCOPUS-
dc.relation.startpage407-
dc.relation.lastpage422-
dc.relation.journaltitleJournal of Combinatorial Theory. Series A-
dc.identifier.doi10.1016/j.jcta.2007.07.001-
dc.identifier.wosidWOS:000255108600003-
dc.identifier.scopusid2-s2.0-39749123893-
dc.author.googleLee H.-
dc.author.googleLee Y.-
dc.contributor.scopusid이혜숙(56101914000;8368898800)-
dc.contributor.scopusid이윤진(23100337700)-
dc.date.modifydate20170601140331-
Appears in Collections:
자연과학대학 > 수학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE