DC Field Value Language
dc.contributor.author고응일-
dc.date.accessioned2016-08-27T02:08:24Z-
dc.date.available2016-08-27T02:08:24Z-
dc.date.issued1999-
dc.identifier.issn0017-0895-
dc.identifier.otherOAK-317-
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/215324-
dc.description.abstractAn operator T is an element of L(H) is called a square root of a hyponormal operator if T-2 is hyponormal. In this paper, we prove the following results: Let S and T be square roots of hyponormal operators. (1) If sigma(T) boolean AND [-sigma(T)] = phi or {0}, then T is isoloid (i.e., every isolated point of sigma(T) is an eigenvalue of T). (2) If S and T commute, then ST is Weyl if and only if S and T are both Weyl. (3) If sigma(T) boolean AND [-sigma(T)] = phi, or {0}, then Weyl&apos;s theorem holds for T. (4) If sigma(T) boolean AND [-sigma(T)] = phi, then T is subscalar. As a corollary, we get that T has a nontrivial invariant subspace if sigma(T) has non-empty interior. (See [3].).-
dc.languageEnglish-
dc.publisherCAMBRIDGE UNIV PRESS-
dc.titleSquare roots of hyponormal operators-
dc.typeArticle-
dc.relation.volume41-
dc.relation.indexSCIE-
dc.relation.indexSCOPUS-
dc.relation.startpage463-
dc.relation.lastpage470-
dc.relation.journaltitleGLASGOW MATHEMATICAL JOURNAL-
dc.identifier.doi10.1017/S0017089599000178-
dc.identifier.wosidWOS:000083540600016-
dc.identifier.scopusid2-s2.0-0038353867-
dc.contributor.scopusid고응일(57217846069)-
dc.date.modifydate20211025153256-
Appears in Collections:
자연과학대학 > 수학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML