View : 367 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.advisor박진병-
dc.contributor.author유주호-
dc.creator유주호-
dc.date.accessioned2023-08-23T16:31:50Z-
dc.date.available2023-08-23T16:31:50Z-
dc.date.issued2023-
dc.identifier.otherOAK-000000205143-
dc.identifier.urihttps://dcollection.ewha.ac.kr/common/orgView/000000205143en_US
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/265873-
dc.description.abstractBaeyer-Villiger monooxygenases (BVMOs) catalyze the conversion of ketone derivatives to esters by breaking a C-C bond and introducing an oxygen. BVMO from Pseudomonas putida (Pp-BVMO) plays a crucial role in the multi-step enzymatic conversion of oleic acid into 9-(nonanoyloxy) nonanoic acid, which can be hydrolyzed into C9 chemicals for the production of bioplastics. However, the low activity of Pp-BVMO limited the bioconversion yield to 9-(nonanoyloxy) nonanoic acid. Therefore, Pp-BVMO was engineered to improve the catalytic efficiency based on our previous studies. The AlphaFold-based structure modeling and in silico substrate access tunnel engineering was performed to accelerate substrate transport. This allowed to construct a highly active BVMO variant, which showed 1.8-fold greater catalytic efficiency (81s-1·mM-1). Furthermore, introduction of the BVMO quintuple mutant in the relatively chemical-tolerant Escherichia coli strains led to a significant improvement in the biotransformation performance. For instance, E. coli MG1655, expressing the quintuple mutant in addition to an oleate hydratase from Stenotrophomonas maltophilia and a secondary alcohol dehydrogenase from Micrococcus luteus, allowed to produce 9-(nonanoyloxy) nonanoic acid from oleic acid to 27 mM at a cell density of 3 g dry cells/L. The productivity was approximately 2-fold higher than the previously reported. This study will contribute to the eco-friendly production of valuable fatty acid derivatives using biocatalysts.;Baeyer-Villiger monooxygenases (BVMOs)는 C-C 결합을 끊고 산소를 도입함으로써 케톤 유도체를 에스터로 전환하는 생촉매입니다. Pseudomonas putida 유래의 BVMO (Pp-BVMO)는 oleic acid를 생분해성 플라스틱 소재의 단량체 생산에 이용될 수 있는 9-(nonanoyloxy) nonanoic acid로 전환하는 다단계 효소반응에서 핵심 효소로서 중요한 역할을 합니다. 그러나 낮은 Pp-BVMO의 활성은 9-(nonanoyloxy) nonanoic acid의 생산에 제한적인 영향을 줍니다. 따라서 우리는 이전 연구에서 구축된 Pp-BVMO 변이체를 중심으로 촉매 활성을 높이는 연구를 진행했습니다. 본 연구에서는 AlphaFold 기반의 구조 모델링과 인실리코 분석을 통해 터널 엔지니어링을 수행했으며 이를 통해 기존 변이체보다 180% 더 높은 촉매 활성 (81s-1·mM-1)을 나타내는 고활성 BVMO 변이체 (Pp-BVMO_ C302L/M340L/M380L/ S397A/L255A)를 구축했습니다. 또한, 내성이 높은 E. coli K-12 균주에 구축한 BVMO 변이체를 도입함으로써 생물전환 수율을 크게 향상시켰습니다. 예를 들어, 장쇄지방산 수송체, 올레산 수화효소 1, 알코올 탈수소효소와 BVMO를 동시 발현시킨 E. coli MG1655 생촉매는 oleic acid로부터 27 mM의 9-(nonanoyloxy) nonanoic acid를 생산할 수 있었습니다 (건조균체량: 3 g dry cells/L). 생산 수율은 이전 보고된 생촉매보다 약 2배 높은 결과를 보였습니다. 이 연구는 생촉매를 이용한 고부가가치 소재들의 환경 친화적인 생산에 기여할 것입니다.-
dc.description.tableofcontentsⅠ. Introduction 1 Ⅱ. Materials and Methods 7 A. Microbial strains and growth conditions 9 B. DE3 expression system 9 C. 3D structure modeling using AlphaFold2 and in silico tunnel analysis 10 D. Site-directed mutagenesis 10 E. In vitro Enzyme kinetics 12 1. Enzyme purification 12 2. Enzyme kinetics 12 F. In vivo Whole cell reactions 13 G. Gas chromatography/mass spectrometry analysis 13 Ⅲ. Results and Discussion 14 A. 3D structure modeling of Pp-BVMO 14 B. Tunnel analysis of the Pp-BVMO 21 C. Construction of variants of Pp-BVMO through Tunnel engineering 24 D. Whole cell reaction of engineered BVMO variants 29 E. Biotransformation using a recombinant Escherichia coli biocatalyst 31 Ⅳ. Conclusions 39 Ⅴ. Reference 40 Abstract(inKorean) 43-
dc.formatapplication/pdf-
dc.format.extent1780317 bytes-
dc.languageeng-
dc.publisher이화여자대학교 대학원-
dc.subjectBaeyer-Villiger monooxygenase, AlphaFold, tunnel engineering, catalytic efficiency, biotransformation-
dc.subject.ddc600-
dc.titleEngineering of Baeyer-Villiger monooxygenase-based Escherichia coli biocatalysts for the production of 9-(nonanoyloxy)nonanoic acid from oleic acid-
dc.typeMaster's Thesis-
dc.format.pagev, 44 p.-
dc.identifier.thesisdegreeMaster-
dc.identifier.major대학원 식품공학과-
dc.date.awarded2023. 8-
Appears in Collections:
일반대학원 > 식품공학과 > Theses_Master
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE