View : 361 Download: 0

Template-directed 2D nanopatterning of S=1/2 molecular spins

Title
Template-directed 2D nanopatterning of S=1/2 molecular spins
Authors
Noh, KyungjuColazzo, LucianoUrdaniz, CorinaLee, JaehyunKrylov, DenisDevi, ParulDoll, AndrinHeinrich, Andreas J.Wolf, ChristophDonati, FabioBae, Yujeong
Ewha Authors
Andreas HeinrichFabio Donati배유정Christoph WolfLuciano Colazzo
SCOPUS Author ID
Andreas Heinrichscopus; Fabio Donatiscopus; 배유정scopus; Christoph Wolfscopus; Luciano Colazzoscopus
Journal Title
NANOSCALE HORIZONS
ISSN
2055-6756JCR Link

2055-6764JCR Link
Citation
NANOSCALE HORIZONS
Publisher
ROYAL SOC CHEMISTRY
Indexed
SCIE; SCOPUS WOS
Document Type
Article

Early Access
Abstract
Molecular spins are emerging platforms for quantum information processing. By chemically tuning their molecular structure, it is possible to prepare a robust environment for electron spins and drive the assembly of a large number of qubits in atomically precise spin-architectures. The main challenges in the integration of molecular qubits into solid-state devices are (i) minimizing the interaction with the supporting substrate to suppress quantum decoherence and (ii) controlling the spatial distribution of the spins at the nanometer scale to tailor the coupling among qubits. Herein, we provide a nanofabrication method for the realization of a 2D patterned array of individually addressable Vanadyl Phthalocyanine (VOPc) spin qubits. The molecular nanoarchitecture is crafted on top of a diamagnetic monolayer of Titanyl Phthalocyanine (TiOPc) that electronically decouples the electronic spin of VOPc from the underlying Ag(100) substrate. The isostructural TiOPc interlayer also serves as a template to regulate the spacing between VOPc spin qubits on a scale of a few nanometers, as demonstrated using scanning tunneling microscopy, X-ray circular dichroism, and density functional theory. The long-range molecular ordering is due to a combination of charge transfer from the metallic substrate and strain in the TiOPc interlayer, which is attained without altering the pristine VOPc spin characteristics. Our results pave a viable route towards the future integration of molecular spin qubits into solid-state devices.
DOI
10.1039/d2nh00375a
Appears in Collections:
자연과학대학 > 물리학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE