View : 443 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.advisor박진병-
dc.contributor.author조혜진-
dc.creator조혜진-
dc.date.accessioned2023-02-24T16:31:03Z-
dc.date.available2023-02-24T16:31:03Z-
dc.date.issued2023-
dc.identifier.otherOAK-000000201840-
dc.identifier.urihttps://dcollection.ewha.ac.kr/common/orgView/000000201840en_US
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/264362-
dc.description.abstract직접적인 C-C 축합을 촉매하는 카볼리가제는 선형 합성 경로를 허용하고 효과적인 C1 전환을 위한 전체 세포 촉매를 개발하였다. 본 연구에서는 카볼리가제를 주요 효소로 사용하여 포름알데히드를 C2/C4 화학물질을 비롯한 다양한 제품으로 효소에 의한 생합성을 통한 고부가가치화를 조사하였다. 먼저, 연구 2에서는 이전에 보고된 Zymomonas pyruvate decarboxylase(ZmPDC)뿐만 아니라 다양한 유기체로부터 α-ketoglutarate dehydrogenase complex (SucA)의 탈탄산화효소 E1 성분을 사용하여 두 분자의 아세트알데히드(C2)를 결합하여 아세토인(C4)을 생성하는 활성을 조사하였다. 포르몰라제(FLS). Vibrio vulnificus(VvSucA)의 SucA는 조사한 효소군에서 (R)-거울상 선택성과 함께 가장 높은 탄소-탄소 결합 활성을 보였다. 또한, 구조 기반 돌연변이 연구를 통해 입구 및 활성 부위 잔기 모두를 소수성 잔기로 치환한 VvsucA 돌연변이체에 의해 거울상 선택성 및 촉매 활성이 개선되었다. 이 연구를 통해 효소의 구조와 촉매 활성 사이의 관계를 밝혀냈다. 다음 연구 3에서는 대장균 K-12(EcGCL)의 글리옥실레이트 카르볼리가제의 반응 활성을 새로 발견하고 특성화하였다. 두 분자의 포름알데히드(C1)를 글리콜알데히드(C2) 한 분자로 축합하는 것을 촉매한다. 구조 유도 효소 엔지니어링을 사용하여 개선된 5개 잔기를 갖는 EcGCL 변이체는 촉매 효율을 4배 증가하였고 안정성을 개선하여 고농도 기질에서 더 높은 형질전환 성능을 보였다. 탄소의 손실 없이 포름알데히드로부터 에리트룰로스(C4)를 생산하기 위해 EcGCL과 VvsucA로 구성된 간단한 생체 촉매 시스템이 설계되었다. EcGCL 변이체와 VvsucA 변이체의 조합으로 93%의 전환율로 최대 6mM의 최종 생성물을 생성하였다. 연구 4에서는 포름알데히드로부터 산업적으로 활용 가치가 높은 C2 화학물질(예: 에틸렌 글리콜, 글리콜산)을 생산하기 위해 전세포 생물 전환 활성을 조사하였다. 재조합 대장균 세포는 에틸렌 글리콜 생산을 위한 조작된 EcGCL 및 락트알데히드 환원효소(예: E. coli K-12의 FucO) 또는 글리콜산 생산을 위한 알데히드 탈수소효소(예: E. coli K-12의 AldA)를 과발현하도록 조작되었다. EcGCL 기반 전세포 촉매는 기질과 생성물을 소모하는 부반응을 피하고 스트레스 내성이 있는 대장균 균주를 선정하고 기질 독성을 물리적으로 제거함으로써 생산량을 증가시키도록 설계되었다. 에틸렌 글리콜은 최대 18.2mM의 전환율로 생산되었고, 50mM 포름알데히드에서 92% 전환율을 보였다. 글리콜산은 전세포 생촉매 시스템은 29mM을 생산하였고 97%의 높은 전환율로 생산하였다. 이러한 연구는 C1 화합물로부터 산업적으로 관련된 C2/C4 화학물질의 생합성을 위한 효소/전세포 생촉매 생물전환의 적용에 기여할 것으로 기대된다. 대사 공학 및 효소 공학의 발전으로 다양한 신규 합성 경로를 구성하였으며, 성공적인 전환을 이루었다. ;The carboligases catalyze direct C-C bond condensation, which allows for the biosynthesis of multi-carbon products from C1/C2 chemicals. In this study, biotransformation of formaldehyde and acetaldehyde into glycolic acid, ethylene glycol, and acetoin was investigated. First, a decarboxylating E1 component of the α-ketoglutarate dehydrogenase complex (SucA) was examined for ligating two molecules of acetaldehyde (C2) into one molecule of acetoin (C4). SucA from Vibrio vulnificus (VvSucA) showed the highest carboligating activity with the large (R)-enantioselectivity among SucAs examined. Moreover, enantioselectivity and catalytic activity were improved by engineering the active site of the VvsucA through structure-based mutation studies. Overall, this study allowed to understand characteristics of carboligation of SucA and to produce (R)-acetoin from acetaldehyde to a large enantioselectivity. Second, a newly discovered and characterized glyoxylate carboligase from Escherichia coli K-12 (EcGCL) catalyzes the condensation of two molecules of formaldehyde (C1) into one molecule of glycolaldehyde (C2). Using structure-guided protein engineering, the EcGCL variant with improved 5 residues increased the catalytic efficiency by 4-fold and improved stability, which resulted in higher biotransformation performance in high concentration substrates. For the production of erythrulose (C4) from formaldehyde without carbon loss, a straightforward biocatalytic system composed of EcGCL and VvsucA has been designed. The combination of EcGCL variant and VvsucA variant allowed to produce final product up to 6 mM with a conversion of 93%. For the production of the industrially relevant C2 chemicals (e.g., ethylene glycol, glycolic acid) from formaldehyde, a whole-cell biotransformation was investigated. The recombinant Escherichia coli cells were engineered to overexpress an engineered EcGCL and a lactaldehyde reductase (e.g., FucO from E. coli K-12) for ethylene glycol production or an aldehyde dehydrogenase (e.g., AldA from E. coli K-12) for glycolic acid production. The EcGCL-based biocatalyst was engineered to increase production by avoiding the side reactions of substrate and product, selecting E. coli strains that are less susceptible to stress and physically eliminating substrate toxicity. Ethylene glycol could be produced at 18.2mM with a conversion of ca. 92% from 50mM formaldehyde. The whole-cell system allowed to produce at 29 mM with a conversion yield of 97 %. These studies will contribute to applicability of the carboligase-based biotransforamtions, particularly for the biosynthesis of industrially relevant C2/C4 chemicals from C1 compounds. With the advances in metabolic and enzymatic engineering, it is feasible to construct various synthetic pathways and a successful conversion was achieved.-
dc.description.tableofcontentsIntroduction 1 A. Formaldehyde converting enzyme 3 1. Formolase (FLS) 3 2. Glycolaldehyde Synthase (GALS) 4 3. 2-Hydroacyl CoA lyase (HACL) 5 B. Biotransformation of formaldehyde into value-added products 7 1. Multi-carbon compounds production based on FLS 7 2. Enzymatic synthesis of multi-carbon compounds using GALS 10 3. C2 compounds production based on HACL 10 C. Research objectives 12 Scheme 1. Synthetic linear pathways implemented for one carbon compound 6 Scheme 2. Enzyme cascade/whole-cell bioconversion pathways for conversion into complex compounds by FLS 9 Scheme 3. Enzyme cascade/whole-cell bioconversion pathways for conversion into complex compounds by FLS 11 Scheme 4. Biotransformation of C1 compounds into C2/C4 compounds using carboligases in this study 14 Chapter Ⅱ 15 Enantioselective conversion of acetaldehyde into (R)-acetoin using the Vibrio vulnificus SucA 15 A. Introduction 16 B. Materials and Methods 18 1. Microbial Strains and Culture Media 18 2. Chemicals and Materials 18 3. Gene Cloning 18 4. Expression and purification of the recombinant enzymes 19 5. General procedures for the enzyme assay and biotransformations 20 6. Product Analysis by Gas Chromatography/Mass Spectrometry (GC/MS) 20 7. Product Analysis by High Performance Liquid Chromatography (HPLC) 21 C. Results and Discussion 22 1. Biotransformation of acetaldehyde into (R)-acetoin using SucAs 22 2. Structural features of VvsucAΔ84 26 3. Directed evolution of the active site of VvSucA 29 4. Structural Comparison between FLS, ZmPDC and VvSucA 33 D. Conclusion 37 E. Acknowledgement 37 Supporting Information 38 Chapter Ⅲ 53 Two Step Enzymatic Carboligation of Four Molecules of Formaldehyde into One Molecule of Erythrulose via Glycolaldehyde 53 A. Introduction 54 B. Materials and Methods 57 1. Microbial Strains and Culture Media 57 2. Chemicals and general chemical methods 57 3. Gene Cloning and Construction of Recombinant Plasmids 58 4. Construction of EcGCL Variants 58 5. Expression and Purification of the Enzymes 59 6. Assay of Carboligation Activity of the Enzymes 59 7. Reaction kinetics of the enzymes 60 8. Analytical methods 60 C. Results and Discussion 62 1. Discovery of a carboligase for the synthesis of glycolaldehyde from formaldehyde 62 2. Characteristics of GCL 66 3. Engineering of GCL 70 4. Bioconversion of formaldehyde into erythrulose 74 D. Conclusion 78 E. Acknowledgements 78 Supporting Information 79 Chapter Ⅳ 96 Multi-level engineering of Glyoxylate carboligase-based Escherichia coli biocatalysts for the whole-cell production of C2 chemicals from formaldehyde 96 A. Introduction 97 B. Materials and Methods 100 1. Microbial strains and culture media 100 2. Chemicals and reagents 100 3. Enzyme purification and activity assay 101 4. CRISPR-Cas9 mediated gene deletion 101 5. Enzyme purification and activity assay 101 6. Whole-cell Biotransformation 102 7. Reactant analysis by gas chromatography/mass spectrometry (GC/MS) 102 C. Results and Discussion 104 1. Biotransformation performance of EcGCL variants for carboligation of formaldehyde 104 2. Biotransformation of formaldehyde into ethylene glycol 107 3. Whole-cell biotransformation of formaldehyde into ethylene glycol 109 4. Biotransformation of formaldehyde into glycolic acid 113 5. Construction of E. coli based whole-cell biocatalysts system 116 6. Metabolic engineering E. coli-based whole-cell biocatalyst 119 7. Host strain selection for production of glycolic acid 121 8. Substrate engineering to attenuate substrate toxicity 128 D. Conclusion 130 E. Acknowledgements 130 Supporting Information 131 Conclusion 138 References 140-
dc.formatapplication/pdf-
dc.format.extent3521410 bytes-
dc.languageeng-
dc.publisher이화여자대학교 대학원-
dc.subject.ddc600-
dc.titleBiotransformation of C1 and C2 Chemicals into Industrially Relevant Multi-Carbon Products using Carboligases as Key Enzymes-
dc.typeDoctoral Thesis-
dc.format.pagexvi, 150 p.-
dc.identifier.thesisdegreeDoctor-
dc.identifier.major대학원 식품공학과-
dc.date.awarded2023. 2-
Appears in Collections:
일반대학원 > 식품공학과 > Theses_Ph.D
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE