View : 412 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.advisor한옥희| 황성주-
dc.contributor.author문예나-
dc.creator문예나-
dc.date.accessioned2022-09-05T16:30:03Z-
dc.date.available2022-09-05T16:30:03Z-
dc.date.issued2017-
dc.identifier.otherOAK-000000143421-
dc.identifier.urihttp://dcollection.ewha.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000143421en_US
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/262579-
dc.description.abstractNafion degradation has been known to influence cell performance in polymer electrolyte membrane fuel cells (PEMFCs). We investigated chemically degraded products and performed quantitative analysis using 1H magic angle spinning (MAS) nuclear magnetic resonance (NMR). The result of the present study indicated that like thermal degradation, the terminal groups of Nafion, SO3H groups, were cleaved as the chemical degradation proceeds and produced CF2H and CF2OH replacing the cleaved SO3H groups with OH and H groups. Due to the hydrophobic nature of the CF2H groups, the Nafion channel lost hydrophilic properties. This issue was proved by the fact that λ´ was close to zero. This also meant that a ratio of the decrease of SO3H to the increase of CF2OH was not 1∶1. Rather, CF2H was produced more than CF2OH. Unlike reported, the amount of the OH groups generated (e.g. CF2OH, COOH) was not much than we expected.;나피온 열화는 고분자 전해질 막 연료전지에서 전지 성능에 영향을 주는 것으로 알려져 있어 우리는 1H magic angle spinning(MAS) 핵 자기 공명(NMR)장치를 이용하여 화학적 열화에 따른 나피온 열화 산물의 규명과 정량분석을 수행했다. 그 결과, 열적 열화와 마찬가지로, 화학적 열화는 나피온 말단인 SO3H 기능기를 끊어내며, 끊어진 SO3H 기능기를 OH와 H가 대신하여 CF2OH와 CF2H를 생성하였다. 소수성 성질을 가지는 CF2H로 인해 나피온 내 채널은 친수성 성질을 잃게 되는데 이는 함수량 λ' 값이 0으로 수렴한 결과와 일치한다. 또한 SO3H 기능기 감소와 OH 기능기(예를 들어, CF2OH, COOH 등)의 생성 비가 1:1이 아니라 오히려 OH 기능기보다 CF2H가 더 많이 생성되었다는 것을 확인하였다. 기 보고된 바와 달리, OH 기능기의 생성률은 낮았다.-
dc.description.tableofcontentsI. Introduction 1 A. Polymer electrolyte membrane 1 B. Nafion 2 B-1. Chemical structure of Nafion 2 B-2. How Nafion works in fuel cell 3 B-3. Proton transport mechanism 4 B-4. Nafion degradation 5 C. Nuclear Magnetic Resonance (NMR) spectroscopy 7 C-1. NMR basic principle and major technique 7 C-2. Advantages and disadvantages of 1H NMR spectroscopy 9 C-3. Why to use solid-state NMR spectroscopy 10 II. Objective of the study 11 III. Methods 12 A. Nafion pretreatment 12 B. Chemical treatment using reagent 13 B-1. Fenton reaction experiment 13 B-2. Washing process 15 C. Swelling process and packing method of Nafion after Fenton reaction 16 D. NMR experiment 17 IV. Results 18 A. pH difference as a function of washing methods 18 B. 1H NMR spectrum as a function of Fenton reaction time 20 C. Water content (λ') and weight percent (wt%) calculation 22 C-1. Difference between λ and λ' 22 C-2. Residual water calculation 23 C-3. Relation of λ' and wt% 36 V. Discussion 37 A. OH radical reaction 37 A-1. OH radical reaction in thermal degradation 37 A-2. OH radical reaction in chemical degradation 38 B. λ' as a function of the Fenton reaction time 40 C. Effect of CF2H signal for channel water signal 42 VI. Conclusions 47 VII. Reference 48 Abstract (in Korean) 54-
dc.formatapplication/pdf-
dc.format.extent1533923 bytes-
dc.languageeng-
dc.publisher이화여자대학교 대학원-
dc.subject.ddc500-
dc.titleProton NMR Spectroscopic Investigation on Chemically Degraded Nafion-
dc.typeMaster's Thesis-
dc.format.pagevii, 54 p.-
dc.identifier.thesisdegreeMaster-
dc.identifier.major대학원 화학·나노과학과-
dc.date.awarded2017. 8-
Appears in Collections:
일반대학원 > 화학·나노과학과 > Theses_Master
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE