View : 445 Download: 0

Magnetic field-induced self-assembly of conjugated block copolymers and nanoparticles at the air−water interface

Title
Magnetic field-induced self-assembly of conjugated block copolymers and nanoparticles at the air−water interface
Authors
Park S.-J.Park M.Kang S.Nam C.Narasimha K.Lee W.B.
Ewha Authors
박소정
SCOPUS Author ID
박소정scopus
Issue Date
2022
Journal Title
ACS Applied Materials and Interfaces
ISSN
1944-8244JCR Link
Citation
ACS Applied Materials and Interfaces vol. 14, no. 6, pp. 8266 - 8273
Keywords
Conjugated block copolymersInterfaceMagnetic fieldMagnetic nanoparticlesNanoarraySelf-assembly
Publisher
American Chemical Society
Indexed
SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
Here, we report the magnetic field-induced self-assembly of a conjugated block copolymer, poly(3-hexylthiopene)block-poly(ethylene glycol) (P3HT-b-PEG), and iron oxide nanoparticles (IONPs) at the air−water interface. Binary self-assembly of P3HT-b-PEG and IONPs at the interface results in nanoparticle-embedded P3HT-b-PEG nanowire arrays with a micrometer-scale domain size. Under the magnetic field, the field-induced magnetic interaction significantly improves the degree of order, generating long-range ordered, direction-controlled nanoarrays of P3HT-b-PEG and IONPs, where IONPs are aligned in the direction of the magnetic field over a sub-millimeter scale. The size of IONPs is an important factor for the formation of an ordered assembly structure at the nanometer scale, as it dictates the magnetic dipole interaction and the entropic interaction between nanoparticles and polymers. The consideration of magnetic dipole interactions suggests that the field-induced self-assembly occurs through the formation of intermediate magnetic subunits composed of short IONP strings along the semirigid P3HT nanowires, which can be aligned through the magnetic interactions, ultimately driving the long-range ordered self-assembly. This study demonstrates for the first time that the magnetic field-induced self-assembly can be used to generate macroscopically ordered polymer films with a nanometer-scale order in low fields. © 2022 American Chemical Society
DOI
10.1021/acsami.1c22535
Appears in Collections:
자연과학대학 > 화학·나노과학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE