View : 513 Download: 0

dTBP2 attenuates severe airway inflammation by blocking inflammatory cellular network mediated by dTCTP

Title
dTBP2 attenuates severe airway inflammation by blocking inflammatory cellular network mediated by dTCTP
Authors
Cho, HyunsooKim, Hyo KyeongOh, AreumJeong, Mi GyeongSong, JiseoLee, KyunglimHwang, Eun Sook
Ewha Authors
이경림황은숙
SCOPUS Author ID
이경림scopus; 황은숙scopus
Issue Date
2021
Journal Title
BIOMEDICINE & PHARMACOTHERAPY
ISSN
0753-3322JCR Link

1950-6007JCR Link
Citation
BIOMEDICINE & PHARMACOTHERAPY vol. 144
Keywords
Airway epithelial cellCellular networkMast celldTBP2dTCTP
Publisher
ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
Indexed
SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
Dimeric translationally controlled tumor protein (dTCTP), also known as histamine-releasing factor, amplifies allergic responses and its production has been shown to increase in inflammatory diseases such as allergic asthma. Despite the critical role of dTCTP in allergic inflammation, little is known about its production pathways, associated cellular networks, and underlying molecular mechanisms. In this study, we explored the dTCTPmediated inflammatory networks and molecular mechanisms of dTCTP associated with lipopolysaccharides (LPS)-induced severe asthma. LPS stimulation increased dTCTP production by mast cells and dTCTP secretion during degranulation, and extracellular dTCTP subsequently increased the production of pro-inflammatory molecules, including IL-8, by airway epithelial cells without affecting mast cell activation. Furthermore, dimeric TCTP-binding peptide 2 (dTBP2), a dTCTP inhibitor peptide, selectively blocked the dTCTP-mediated signaling network from mast cells to epithelial cells and decreased IL-8 production through IkB induction and nuclear p65 export in airway epithelial cells. More importantly, dTBP2 efficiently attenuated LPS-induced severe airway inflammation in vivo, resulting in decreased immune cell infiltration and IL-17 production and attenuated dTCTP secretion. These results suggest that dTCTP produced by mast cells exacerbates airway inflammation through activation of airway epithelial cells in a paracrine signaling manner, and that dTBP2 is beneficial in the treatment of severe airway inflammation by blocking the dTCTP-mediated inflammatory cellular network.
DOI
10.1016/j.biopha.2021.112316
Appears in Collections:
약학대학 > 약학과 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE