View : 641 Download: 131

Full metadata record

DC Field Value Language
dc.contributor.author강동민-
dc.date.accessioned2021-07-01T16:36:57Z-
dc.date.available2021-07-01T16:36:57Z-
dc.date.issued2020-
dc.identifier.issn2213-2317-
dc.identifier.otherOAK-28361-
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/257774-
dc.description.abstractTreatment with nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with various side effects, including cardiovascular and hepatic disorders. Studies suggest that mitochondrial damage and oxidative stress are important mediators of toxicity, yet the underlying mechanisms are poorly understood. In this study, we identified that some NSAIDs, including diclofenac, inhibit autophagic flux in hepatocytes. Further detailed studies demonstrated that diclofenac induced a reactive oxygen species (ROS)-dependent increase in lysosomal pH, attenuated cathepsin activity and blocked autophagosome-lysosome fusion. The reactivation of lysosomal function by treatment with clioquinol or transfection with the transcription factor EB restored lysosomal pH and thus autophagic flux. The production of mitochondrial ROS is critical for this process since scavenging ROS reversed lysosomal dysfunction and activated autophagic flux. The compromised lysosomal activity induced by diclofenac also inhibited the fusion with and degradation of mitochondria by mitophagy. Diclofenac-induced cell death and hepatotoxicity were effectively protected by rapamycin. Thus, we demonstrated that diclofenac induces the intracellular ROS production and lysosomal dysfunction that lead to the suppression of autophagy. Impaired autophagy fails to maintain mitochondrial integrity and aggravates the cellular ROS burden, which leads to diclofenac-induced hepatotoxicity.-
dc.languageEnglish-
dc.publisherELSEVIER-
dc.subjectDiclofenac-
dc.subjectHepatotoxicity-
dc.subjectLysosomal dysfunction-
dc.subjectMitophagy-
dc.subjectNonsteroidal anti-inflammatory drugs-
dc.subjectReactive oxygen species-
dc.titleDiclofenac impairs autophagic flux via oxidative stress and lysosomal dysfunction: Implications for hepatotoxicity-
dc.typeArticle-
dc.relation.volume37-
dc.relation.indexSCIE-
dc.relation.indexSCOPUS-
dc.relation.journaltitleREDOX BIOLOGY-
dc.identifier.doi10.1016/j.redox.2020.101751-
dc.identifier.wosidWOS:000605007100005-
dc.identifier.scopusid2-s2.0-85092606797-
dc.author.googleJung, Seung-Hwan-
dc.author.googleLee, Wonseok-
dc.author.googlePark, Seung-Hyun-
dc.author.googleLee, Kang-Yo-
dc.author.googleChoi, You-Jin-
dc.author.googleChoi, Soohee-
dc.author.googleKang, Dongmin-
dc.author.googleKim, Sinri-
dc.author.googleChang, Tong-Shin-
dc.author.googleHong, Soon-Sun-
dc.author.googleLee, Byung-Hoon-
dc.contributor.scopusid강동민(13103841000)-
dc.date.modifydate20230210131016-


qrcode

BROWSE