View : 510 Download: 0

Semiconductor-less vertical transistor with I ON/I OFF of 106

Title
Semiconductor-less vertical transistor with I ON/I OFF of 106
Authors
Lee J.-H.Shin D.H.Yang H.Jeong N.B.Park D.-H.Watanabe K.Taniguchi T.Kim E.Lee S.W.Jhang S.H.Park B.H.Kuk Y.Chung H.-J.
Ewha Authors
이상욱
SCOPUS Author ID
이상욱scopus
Issue Date
2021
Journal Title
Nature Communications
ISSN
2041-1723JCR Link
Citation
Nature Communications vol. 12, no. 1
Publisher
Nature Research
Indexed
SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
Semiconductors have long been perceived as a prerequisite for solid-state transistors. Although switching principles for nanometer-scale devices have emerged based on the deployment of two-dimensional (2D) van der Waals heterostructures, tunneling and ballistic currents through short channels are difficult to control, and semiconducting channel materials remain indispensable for practical switching. In this study, we report a semiconductor-less solid-state electronic device that exhibits an industry-applicable switching of the ballistic current. This device modulates the field emission barrier height across the graphene-hexagonal boron nitride interface with ION/IOFF of 106 obtained from the transfer curves and adjustable intrinsic gain up to 4, and exhibits unprecedented current stability in temperature range of 15–400 K. The vertical device operation can be optimized with the capacitive coupling in the device geometry. The semiconductor-less switching resolves the long-standing issue of temperature-dependent device performance, thereby extending the potential of 2D van der Waals devices to applications in extreme environments. © 2021, The Author(s).
DOI
10.1038/s41467-021-21138-y
Appears in Collections:
자연과학대학 > 물리학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE