View : 601 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.author이상돈*
dc.contributor.author김민경*
dc.date.accessioned2021-02-25T16:31:47Z-
dc.date.available2021-02-25T16:31:47Z-
dc.date.issued2021*
dc.identifier.issn1660-4601*
dc.identifier.otherOAK-28889*
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/257152-
dc.description.abstractThe response of the phenological events of individual species to climate change is not isolated, but is connected through interaction with other species at the same or adjacent trophic level. Using long-term phenological data observed since 1976 in Korea, whose temperature has risen more steeply than the average global temperature, this study conducted phenological analysis (differ-ences in the phenology of groups, differences in phenological shifts due to climate change, differ-ences in phenological sensitivity to climate by groups, and the change of phenological day differ-ences among interacting groups). The phenological shift of the producer group (plants) was found to be negative in all researched species, which means that it blooms quickly over the years. The regression slope of consumers (primary consumers and secondary consumers) was generally posi-tive which means that the phenological events of these species tended to be later during the study period. The inter-regional deviation of phenological events was not large for any plant except for plum tree and Black locust. In addition, regional variations in high trophic levels of secondary consumers tended to be greater than that of producers and primary consumers. Among the studied species, plum was the most sensitive to temperature, and when the temperature rose by 1 degrees C, the flowering time of plum decreased by 7.20 days. As a result of checking the day differences in the phenological events of the interacting species, the phenological events of species were reversed, and butterflies have appeared earlier than plum, Korean forsythia, and Korean rosebay since 1990. Using long-term data from Korea, this study investigated differences in phenological reactions among trophic groups. There is a possibility of a phenological mismatch between trophic groups in the future if global warming continues due to differences in sensitivity to climate and phenological shifts between trophic levels.*
dc.languageEnglish*
dc.publisherMDPI*
dc.subjectsynchrony*
dc.subjectglobal warming*
dc.subjectspecies interaction*
dc.subjectcommunity*
dc.subjectphenology*
dc.titlePhenological Response in the Trophic Levels to Climate Change in Korea*
dc.typeArticle*
dc.relation.issue3*
dc.relation.volume18*
dc.relation.indexSCIE*
dc.relation.indexSSCI*
dc.relation.indexSCOPUS*
dc.relation.journaltitleINTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH*
dc.identifier.doi10.3390/ijerph18031086*
dc.identifier.wosidWOS:000615164800001*
dc.identifier.scopusid2-s2.0-85099979917*
dc.author.googleKim, Minkyung*
dc.author.googleLee, Sojeong*
dc.author.googleLee, Hakyung*
dc.author.googleLee, Sangdon*
dc.contributor.scopusid이상돈(55716359900)*
dc.contributor.scopusid김민경(55686382500)*
dc.date.modifydate20240322131411*
Appears in Collections:
공과대학 > 환경공학과 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE