View : 547 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.author김동하*
dc.date.accessioned2021-02-25T16:30:59Z-
dc.date.available2021-02-25T16:30:59Z-
dc.date.issued2020*
dc.identifier.issn1614-6832*
dc.identifier.issn1614-6840*
dc.identifier.otherOAK-28943*
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/257049-
dc.description.abstractN-type metal oxides such as hematite (alpha-Fe2O3) and bismuth vanadate (BiVO4) are promising candidate materials for efficient photoelectrochemical water splitting; however, their short minority carrier diffusion length and restricted carrier lifetime result in undesired rapid charge recombination. Herein, a 2D arranged globular Au nanosphere (NS) monolayer array with a highly ordered hexagonal hole pattern (hereafter, Au array) is introduced onto the surface of photoanodes comprised of metal oxide films via a facile drying and transfer-printing process. Through plasmon-induced resonance energy transfer, the Au array provides a strong electromagnetic field in the near-surface area of the metal oxide film. The near-field coupling interaction and amplification of the electromagnetic field suppress the charge recombination with long-lived photogenerated holes and simultaneously enhance the light harvesting and charge transfer efficiencies. Consequently, an over 3.3-fold higher photocurrent density at 1.23 V versus reversible hydrogen electrode (RHE) is achieved for the Au array/alpha-Fe2O3. Furthermore, the high versatility of this transfer printing of Au arrays is demonstrated by introducing it on the molybdenum-doped BiVO4 film, resulting in 1.5-fold higher photocurrent density at 1.23 V versus RHE. The tailored metal film design can provide a potential strategy for the versatile application in various light-mediated energy conversion and optoelectronic devices.*
dc.languageEnglish*
dc.publisherWILEY-V C H VERLAG GMBH*
dc.subject2D pattern array*
dc.subjectgold nanospheres*
dc.subjectmetal oxide photoanodes*
dc.subjectsolar water splitting*
dc.titleRetarded Charge-Carrier Recombination in Photoelectrochemical Cells from Plasmon-Induced Resonance Energy Transfer*
dc.typeArticle*
dc.relation.issue22*
dc.relation.volume10*
dc.relation.indexSCIE*
dc.relation.indexSCOPUS*
dc.relation.journaltitleADVANCED ENERGY MATERIALS*
dc.identifier.doi10.1002/aenm.202000570*
dc.identifier.wosidWOS:000527995600001*
dc.author.googleChoi, Young Moon*
dc.author.googleLee, Byoung Wan*
dc.author.googleJung, Myung Sun*
dc.author.googleHan, Hyun Soo*
dc.author.googleKim, Suk Hyun*
dc.author.googleChen, Kaifeng*
dc.author.googleKim, Dong Ha*
dc.author.googleHeinz, Tony F.*
dc.author.googleFan, Shanhui*
dc.author.googleLee, Jihye*
dc.author.googleYi, Gi-Ra*
dc.author.googleKim, Jung Kyu*
dc.author.googlePark, Jong Hyeok*
dc.contributor.scopusid김동하(26039227400)*
dc.date.modifydate20240123104500*
Appears in Collections:
자연과학대학 > 화학·나노과학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE