View : 526 Download: 0

Cinchonine inhibits osteoclast differentiation by regulating TAK1 and AKT, and promotes osteogenesis

Title
Cinchonine inhibits osteoclast differentiation by regulating TAK1 and AKT, and promotes osteogenesis
Authors
Jo, You-JinLee, Hye InKim, NaraeHwang, DonghyunLee, JiaeLee, Gong-RakHong, Seong-EunLee, HanaKwon, MinjeongKim, Nam YoungKim, Hyun JinPark, Jin HaKang, Ye HeeKim, Han SungLee, Soo YoungJeong, Woojin
Ewha Authors
이수영정우진이공락
SCOPUS Author ID
이수영scopusscopus; 정우진scopus; 이공락scopus
Issue Date
2021
Journal Title
JOURNAL OF CELLULAR PHYSIOLOGY
ISSN
0021-9541JCR Link

1097-4652JCR Link
Citation
JOURNAL OF CELLULAR PHYSIOLOGY vol. 236, no. 3, pp. 1854 - 1865
Keywords
AKTbonecinchonineosteoblastosteoclastTAK1
Publisher
WILEY
Indexed
SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
Cinchonine (CN) has been known to exert antimalarial, antiplatelet, and antiobesity effects. It was also recently reported to inhibit transforming growth factor beta-activated kinase 1 (TAK1) and protein kinase B (AKT) through binding to tumor necrosis factor receptor-associated factor 6 (TRAF6). However, its role in bone metabolism remains largely unknown. Here, we showed that CN inhibits osteoclast differentiation with decreased expression of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a key determinant of osteoclastogenesis. Immunoblot and quantitative real-time polymerase chain reaction analysis as well as the reporter assay revealed that CN inhibits nuclear factor-kappa B and activator protein-1 by regulating TAK1. CN also attenuated the activation of AKT, cyclic AMP response element-binding protein, and peroxisome proliferator-activated receptor-gamma coactivator 1 beta (PGC1 beta), an essential regulator of mitochondrial biogenesis. Collectively, these results suggested that CN may inhibit TRAF6-mediated TAK1 and AKT activation, which leads to downregulation of NFATc1 and PGC1 beta resulting in the suppression of osteoclast differentiation. Interestingly, CN not only inhibited the maturation and resorption function of differentiated osteoclasts but also promoted osteoblast differentiation. Furthermore, CN protected lipopolysaccharide- and ovariectomy-induced bone destruction in mouse models, suggesting its therapeutic potential for treating inflammation-induced bone diseases and postmenopausal osteoporosis.
DOI
10.1002/jcp.29968
Appears in Collections:
자연과학대학 > 생명과학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE