View : 461 Download: 0

Deficiency of peroxiredoxin 2 exacerbates angiotensin II-induced abdominal aortic aneurysm

Title
Deficiency of peroxiredoxin 2 exacerbates angiotensin II-induced abdominal aortic aneurysm
Authors
Jeong, Se-JinCho, Min JiKo, Na YoungKim, SinaiJung, In-HyukMin, Jeong-KiLee, Sang HakPark, Jong-GilOh, Goo Taeg
Ewha Authors
오구택
SCOPUS Author ID
오구택scopus
Issue Date
2020
Journal Title
EXPERIMENTAL AND MOLECULAR MEDICINE
ISSN
1226-3613JCR Link

2092-6413JCR Link
Citation
EXPERIMENTAL AND MOLECULAR MEDICINE vol. 52, no. 9, pp. 1587 - 1601
Publisher
SPRINGERNATURE
Indexed
SCIE; SCOPUS; KCI WOS
Document Type
Article
Abstract
Abdominal aortic aneurysm (AAA) is an inflammatory vascular disease characterized by structural deterioration of the aorta caused by inflammation and oxidative stress, leading to aortic dilatation and rupture. Peroxiredoxin 2 (PRDX2), an antioxidant enzyme, has been reported as a potential negative regulator of inflammatory vascular diseases, and it has been identified as a protein that is increased in patients with ruptured AAA compared to patients with nonruptured AAA. In this study, we demonstrated that PRDX2 was a pivotal factor involved in the inhibition of AAA progression. PRDX2 levels were increased in AAA compared with those in normal aortas in both humans and mice. Ultrasound imaging revealed that the loss of PRDX2 accelerated the development of AAA in the early stages and increased AAA incidence in mice infused with angiotensin II (Ang II).Prdx2(-/-)mice infused with Ang II exhibited increased aortic dilatation and maximal aortic diameter without a change in blood pressure. Structural deterioration of the aortas fromPrdx2(-/-)mice infused with Ang II was associated with increases in the degradation of elastin, oxidative stress, and intramural thrombi caused by microhemorrhages, immature neovessels, and the activation of matrix metalloproteinases compared to that observed in controls. Moreover, an increase in inflammatory responses, including the production of cell adhesion molecules and the accumulation of inflammatory cells and proinflammatory cytokines due to PRDX2 deficiency, accelerated Ang II-induced AAA progression. Our data confirm that PRDX2 plays a role as a negative regulator of the pathological process of AAA and suggest that increasing PRDX2 activity may be a novel strategy for the prevention and treatment of AAA. Abdominal aortic aneurysm: Potential enzyme biomarker identified An enzyme with antioxidant properties may provide a biomarker and therapeutic agent to help treat abdominal aortic aneurysm (AAA). AAA involves the structural deterioration of the aorta through chronic inflammation and oxidative stress, and can trigger life-threatening artery rupture. An antioxidant enzyme called peroxiredoxin 2 (PRDX2) is increased in patients with ruptures, but whether its role in AAA is beneficial or detrimental is unclear. Goo Taeg Oh at the Ewha Womans University in Seoul, Jong-Gil Park at the Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea, and co-workers examined the effect of PRDX2 on AAA progression. PRDX2 suppressed structural damage in mice, limiting artery dilation and protein degradation. Loss of PRDX2 accelerated AAA development. Measuring levels of PRDX2 may indicate AAA severity in patients, while boosting the enzyme could repair aortic damage.
DOI
10.1038/s12276-020-00498-3
Appears in Collections:
자연과학대학 > 생명과학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE