View : 583 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.author박재홍*
dc.date.accessioned2020-08-20T16:30:20Z-
dc.date.available2020-08-20T16:30:20Z-
dc.date.issued2019*
dc.identifier.issn2041-6520*
dc.identifier.issn2041-6539*
dc.identifier.otherOAK-27607*
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/255042-
dc.description.abstractAs structure defined cutouts of the graphene lattice, nanographene molecules have gained plenty of attention because of their high potential for versatile applications in organic electronics and energy conversion devices and as ideal model systems for the better understanding of intrinsic structure-property correlations of graphenes. In this study, well-defined nanographenes with sp(2) carbon networks of different sizes, hexa-peri-hexabenzocoronene (HBC) and its rectangularly pi-extended version, a short graphene nanoribbon (GNR), have been covalently functionalized with photoactive porphyrin molecules. On the basis of their spectroscopic studies, the photodynamics of the porphyrin-linked nanographenes was found to be influenced substantially by the size of the nanographenes. Photoexcitation of the porphyrin-HBC linked system led to exclusive energy transfer (EnT) from the first singlet excited state (S-1) of the nanographene to the porphyrin, whereas opposite selective EnT occurred from the first and second singlet excited states (S-1 and S-2) of the porphyrin to the nanographene in the porphyrin-GNR linked system. In particular, ultrafast efficient EnTs from both the S-2 and S-1 states of the porphyrin to GNR mimic the corresponding ultrafast EnTs from the S-2 and S-1 states of carotenoids to chlorophylls in light-harvesting systems of natural photosynthesis. Such unique photophysical properties will be useful for the rational design of carbon-based photofunctional nanomaterials for optoelectronics and solar energy conversion devices.*
dc.languageEnglish*
dc.publisherROYAL SOC CHEMISTRY*
dc.titleExclusive occurrence of photoinduced energy transfer and switching of its direction by rectangular pi-extension of nanographenes*
dc.typeArticle*
dc.relation.issue27*
dc.relation.volume10*
dc.relation.indexSCIE*
dc.relation.indexSCOPUS*
dc.relation.startpage6642*
dc.relation.lastpage6650*
dc.relation.journaltitleCHEMICAL SCIENCE*
dc.identifier.doi10.1039/c9sc01538h*
dc.identifier.wosidWOS:000477947800005*
dc.author.googleUmeyama, Tomokazu*
dc.author.googleHanaoka, Takuma*
dc.author.googleYamada, Hiroki*
dc.author.googleNamura, Yuki*
dc.author.googleMizuno, Satoshi*
dc.author.googleOhara, Tomoya*
dc.author.googleBaek, Jinseok*
dc.author.googlePark, JaeHong*
dc.author.googleTakano, Yuta*
dc.author.googleStranius, Kati*
dc.author.googleTkachenko, Nikolai V.*
dc.author.googleImahori, Hiroshi*
dc.contributor.scopusid박재홍(54391574900)*
dc.date.modifydate20240311112320*
Appears in Collections:
자연과학대학 > 화학·나노과학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE