View : 687 Download: 0

Fast and Power-Analysis Resistant Ring Lizard Crypto-Processor Based on the Sparse Ternary Property

Title
Fast and Power-Analysis Resistant Ring Lizard Crypto-Processor Based on the Sparse Ternary Property
Authors
Choi, PiljooKim, Ji-HoonKim, Dong Kyue
Ewha Authors
김지훈
SCOPUS Author ID
김지훈scopus
Issue Date
2019
Journal Title
IEEE ACCESS
ISSN
2169-3536JCR Link
Citation
IEEE ACCESS vol. 7, pp. 98684 - 98693
Keywords
Coprocessorsdigital circuitsfield programmable gate arraysside-channel attackspost-quantum cryptography
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Indexed
SCIE; SCOPUS WOS
Document Type
Article
Abstract
Ring Lizard (RLizard) is a quantum-resistant public-key cryptosystem based on the ideal lattice. RLizard uses a sparse ternary polynomial, which facilitates implementation with lower complexity. The Lizard scheme's proposal for the National Institute of Standards and Technology's post-quantum cryptography standardization included its reference hardware design using the sparse ternary property; however, in this paper, we present the RLizard crypto-processor with the improved processing speed and security level against power analysis attacks. By additionally utilizing unused values for each memory access in the conventional RLizard crypto-processor, the processing speed of the proposed RLizard crypto-processors can increase by a factor of two or up to four times. The implementation results with three different FPGA devices show that the area overhead is approximately 50-100 flip-flops (FFs) and 50-300 lookup tables (LUTs), occupying approximately 2%-3% of the total area. The vulnerability to power analysis attacks and the proposed countermeasures were also analyzed. The experimental results prove the vulnerability of unprotected implementation, and the implementation results show that the masking and hiding countermeasures additionally require approximately 50-120 FFs and 100-360 LUTs. In addition, our idea can be applied to other ideal-lattice-based cryptosystems using a sparse binary or ternary polynomial, such as NTRU and Round5.
DOI
10.1109/ACCESS.2019.2929299
Appears in Collections:
공과대학 > 전자전기공학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE