View : 599 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.advisor김준수-
dc.contributor.author최세현-
dc.creator최세현-
dc.date.accessioned2020-03-30T16:30:13Z-
dc.date.available2020-03-30T16:30:13Z-
dc.date.issued2015-
dc.identifier.otherOAK-000000110965-
dc.identifier.urihttp://dcollection.ewha.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000110965en_US
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/253635-
dc.description.abstract우리는 Molecular dynamics simulation을 통해 basal plane과 prismatic plane 의 두가지 방향에서 얼음이 자라는 현상을 관찰하고Metastable 얼음의 anisotropic growth 와 stacking disordered phase를 동역학적 관점에서 설명했다. 연구 결과에 의하면 얼음은 anisotropic한 growth 를 한다. 즉 Basal plane방향으로 자라는 것이 prismatic plane때보다 느린데, 이는 다음 layer가 쌓일 때 생겨야하는 수소결합이 basal plane이 prismatic plane보다 많기 때문이다. 하지만 이런 기존의 해석은 실제 다양한 분포를 가지고 속도 차이가 나는 것의 것은 설명하지 못한다. 따라서 우리는 basal plane에서만 stacking disordered phase가 관찰 된 것을 토대로 얼음이 자라면서 하나의 layer에서 cubic구조와 hexagonal구조가 동시에 자라면서 stacking competition이 있기 때문에 속도가 늦춰진다고 결론지었다. 또한 각 layer가 형성되는 속도를 분석해 시뮬레이션 시스템의 크기에 따라 얼음 형성 속도가 영향을 받는 것을 확인하였다. 더 나아가 얼음이 stacking competition하면서 자라는 것은 두개의 구별되는 phase가 하나의 크리스탈 구조에 형성되는 경우, 즉 특정 semiconductor나 platinum nanoparticles에 있는 stacking competition에도 상응할 것으로 예상한다.; Our observations demonstrate the in-layer stacking competition between hexagonal and cubic ice structures during ice growth by Molecular Dynamics simulations. When water molecules freeze into the direction of perpendicular to the basal face, hexagonal and cubic ice structures grow together and compete in the same layer so that one of two structures dominates the layer or two structures stay as stacking disordered regions. Otherwise, this is insignificant during ice growth on prismatic faces. This phenomenon of forming ice crystals, in-layer stacking competition, is examined by two-dimensional density maps of water molecules. We conclude that ice growth of basal plane is slower than that on prismatic plane because of this phenomenon. Also we investigate the kinetics of layer formation and the size dependence on the growth rates of ice crystals. Furthermore the understanding of ice growth mechanism may be helpful to elucidate stacking behavior of semiconductor and platinum nanoparticles.-
dc.description.tableofcontentsI. Introduction 1 II. Models and Method 9 A. Models and simulation details 9 B. Definitions of water molecules and ice molecules 13 C. Calculation two-dimensional density profiles of water molecules in each year 18 D. Calculation of growth rates 19 III. Results and Discussion 21 A. In-layer stacking competition behavior in ice growth 21 1. Snapshots of simulations 21 2. Size dependence on ice growth 27 3. The time evolution of two-dimensional density profiles of water molecules 28 B. Ice growth rates and kinetics of layer formation 39 C. Stacking disorder in ice of the TIP5P-E water model 56 IV. Conclusions 60 V. References 63 Abstract ( in Korean ) 68-
dc.formatapplication/pdf-
dc.format.extent8117557 bytes-
dc.languageeng-
dc.publisher이화여자대학교 대학원-
dc.subject.ddc500-
dc.titleMolecular Dynamics Study of Ice Growth-
dc.typeMaster's Thesis-
dc.format.pagevi, 69 p.-
dc.contributor.examiner김명화-
dc.contributor.examiner이민영-
dc.contributor.examiner김준수-
dc.identifier.thesisdegreeMaster-
dc.identifier.major대학원 화학·나노과학과-
dc.date.awarded2015. 2-
Appears in Collections:
일반대학원 > 화학·나노과학과 > Theses_Master
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE