View : 33 Download: 0

Pan-cancer analysis of whole genomes

Pan-cancer analysis of whole genomes
Muyas F.Campbell P.J.Getz G.Korbel J.O.Stuart J.M.Jennings J.L.Stein L.D.Perry M.D.Nahal-Bose H.K.Ouellette B.F.F.Li C.H.Rheinbay E.Nielsen G.P.Sgroi D.C.Wu C.-L.Faquin W.C.Deshpande V.Boutros P.C.Lazar A.J.Hoadley K.A.Drechsel O.Louis D.N.Dursi L.J.Yung C.K.Bailey M.H.Saksena G.Raine K.M.Buchhalter I.Kleinheinz K.Schlesner M.Zhang J.Wang W.Wheeler D.A.Ding L.Simpson J.T.O’Connor B.D.Yakneen S.Ellrott K.Miyoshi N.Butler A.P.Royo R.Shorser S.I.Vazquez M.Rausch T.Tiao G.Waszak S.M.Rodriguez-Martin B.Shringarpure S.Wu D.-Y.Demidov G.M.Delaneau O.Hayashi S.Imoto S.Habermann N.Segre A.V.Garrison E.Cafferkey A.Alvarez E.G.Heredia-Genestar J.M.Eils R.Fulton R.S.Gelpi J.L.Gonzalez S.Gut I.G.Hach F.Grossman R.L.Heinold M.Hu T.Huang V.Hutter B.Jäger N.Jung J.Kumar Y.Lalansingh C.Leshchiner I.Livitz D.Ma E.Z.Maruvka Y.E.Milovanovic A.Nielsen M.M.Paramasivam N.Kim Y. ...Pedersen J.S.Puiggròs M.Sahinalp S.C.Sarrafi I.Stewart C.Stobbe M.D.Wala J.A.Wang J.Wendl M.Werner J.Wu Z.Xue H.Yamaguchi T.N.Yellapantula V.Davis-Dusenbery B.N.Craft B.Piñeiro-Yáñez E.Muñoz A.Petryszak R.Juul S.Roberts S.A.Song L.Koster R.Mirabello L.Hua X.Tanskanen T.J.Tojo M.Chen J.Aaltonen L.A.Rätsch G.Schwarz R.F.Butte A.J.Brazma A.Chanock S.J.Chatterjee N.Stegle O.Harismendy O.Bova G.S.Gordenin D.A.Haan D.Sieverling L.Feuerbach L.Chalmers D.Joly Y.Knoppers B.Molnár-Gábor F.Phillips M.Thorogood A.Townend D.Goldman M.Fonseca N.A.Xiang Q.Füllgrabe A.Bruzos A.L.Temes J.Zamora J.Baez-Ortega A.Kim H.-L.Ferretti V.Sabarinathan R.Mashl R.J.Ye K.DiBiase A.Huang K.-L.Letunic I.McLellan M.D.Newhouse S.J.Shmaya T.Kumar S.Wedge D.C.Wright M.H.Yellapantula V.D.Gerstein M.Khurana E.Marques-Bonet T.Navarro A.Bustamante C.D.Siebert R.Pich O.Gonzalez-Perez A.Nakagawa H.Easton D.F.Ossowski S.Tubio J.M.C.De La Vega F.M.Estivill X.Yuen D.Mihaiescu G.L.Omberg L.Chen K.Chong Z.Al-Shahrour F.Keays M.Haussler D.Weinstein J.Huber W.Valencia A.Papatheodorou I.Zhu J.Fan Y.Torrents D.Bieg M.Cibulskis K.Taylor-Weiner A.Klimczak L.J.Fittall M.W.Demeulemeester J.Tarabichi M.Roberts N.D.Van Loo P.Cortés-Ciriano I.Urban L.Park P.Zhu B.Pitkänen E.Li Y.Weischenfeldt J.Saini N.Turner D.Sidiropoulos N.Alexandrov L.B.Rabionet R.Escaramis G.Bosio M.Holik A.Z.Susak H.Prasad A.Erkek S.Calabrese C.Raeder B.Harrington E.Mayes S.
Ewha Authors
김동하Filipe Marques Mota
김동하scopus; Filipe Marques Motascopus
Issue Date
Journal Title
0028-0836JCR Link
Nature vol. 578, no. 7793, pp. 82 - 93
Nature Research
Document Type
About half of all cancers have somatic integrations of retrotransposons. Here, to characterize their role in oncogenesis, we analyzed the patterns and mechanisms of somatic retrotransposition in 2,954 cancer genomes from 38 histological cancer subtypes within the framework of the Pan-Cancer Analysis of Whole Genomes (PCAWG) project. We identified 19,166 somatically acquired retrotransposition events, which affected 35% of samples and spanned a range of event types. Long interspersed nuclear element (LINE-1; L1 hereafter) insertions emerged as the first most frequent type of somatic structural variation in esophageal adenocarcinoma, and the second most frequent in head-and-neck and colorectal cancers. Aberrant L1 integrations can delete megabase-scale regions of a chromosome, which sometimes leads to the removal of tumor-suppressor genes, and can induce complex translocations and large-scale duplications. Somatic retrotranspositions can also initiate breakage–fusion–bridge cycles, leading to high-level amplification of oncogenes. These observations illuminate a relevant role of L1 retrotransposition in remodeling the cancer genome, with potential implications for the development of human tumors. © 2020, The Author(s).
Appears in Collections:
자연과학대학 > 화학·나노과학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
RIS (EndNote)
XLS (Excel)


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.