View : 55 Download: 0

LAGRANGIAN-CONIC RELAXATIONS, PART II: APPLICATIONS TO POLYNOMIAL OPTIMIZATION PROBLEMS

Title
LAGRANGIAN-CONIC RELAXATIONS, PART II: APPLICATIONS TO POLYNOMIAL OPTIMIZATION PROBLEMS
Authors
Arima, NaohikoKim, SunyoungKojima, MasakazuToh, Kim-Chuan
Ewha Authors
김선영
SCOPUS Author ID
김선영scopus
Issue Date
2019
Journal Title
PACIFIC JOURNAL OF OPTIMIZATION
ISSN
1348-9151JCR Link
Citation
PACIFIC JOURNAL OF OPTIMIZATION vol. 15, no. 3, pp. 415 - 439
Keywords
polynomial optimization problemmoment cone relaxationSOS relaxationa hierarchy of the Lagrangian-SDP relaxations
Publisher
YOKOHAMA PUBL
Indexed
SCIE WOS
Document Type
Article
Abstract
We present a moment cone (MC) relaxation and a hierarchy of Lagrangian-SDP relaxations of polynomial optimization problems (POPs) using the unified framework established in Part I. The MC relaxation is derived for a POP of minimizing a polynomial subject to a nonconvex cone constraint and polynomial equality constraints. It is an extension of the completely positive programming relaxation for QOPs. Under a copositivity condition, we characterize the equivalence of the optimal values between the POP and its MC relaxation. A hierarchy of Lagrangian-SDP relaxations, which is parameterized by a positive integer w, is proposed for an equality constrained POP. It is obtained by combining Lasserre's hierarchy of SDP relaxation of POPs and the basic idea behind the conic and Lagrangian-conic relaxations from the unified framework. We prove under a certain assumption that the optimal value of the Lagrangian-SDP relaxation with the Lagrangian multiplier lambda and the relaxation order w in the hierarchy converges to that of the POP as lambda ->infinity and omega ->infinity The hierarchy of Lagrangian-SDP relaxations is designed to be used in combination with the bisection and 1-dimensional Newton methods, which was proposed in Part I, for solving large-scale POPs efficiently and effectively.
Appears in Collections:
자연과학대학 > 수학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE