View : 910 Download: 175

Full metadata record

DC Field Value Language
dc.contributor.author황금숙*
dc.date.accessioned2019-12-03T16:30:18Z-
dc.date.available2019-12-03T16:30:18Z-
dc.date.issued2019*
dc.identifier.issn1422-0067*
dc.identifier.otherOAK-26061*
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/252281-
dc.description.abstractEPA, an omega-3 polyunsaturated fatty acid, exerts beneficial effects on human health. However, the molecular mechanisms underlying EPA function are poorly understood. The object was to illuminate molecular mechanism underlying EPA's role. Here, H-1-NMR-based metabolic analysis showed enhanced branched-chain amino acids (BCAAs) and lactate following EPA treatment in skeletal muscle cells. EPA regulated mitochondrial oxygen consumption rate. Furthermore, EPA induced calcium/calmodulin-dependent protein kinase kinase (CaMKK) through the generation of intracellular calcium. This induced the phosphorylation of AMP-activated protein kinase (AMPK) and p38 mitogen-activated protein kinase (p38 MAPK) that led to glucose uptake, and the translocation of glucose transporter type 4 (GLUT4) in muscles. In conclusion, EPA exerts benign effects on glucose through the activation of AMPK-p38 MAPK signaling pathways in skeletal muscles.*
dc.languageEnglish*
dc.publisherMDPI*
dc.subjectAMPK*
dc.subjectEPA*
dc.subjectGLUT4*
dc.subjectoxygen consumption*
dc.titleEicosapentaenoic Acid (EPA) Modulates Glucose Metabolism by Targeting AMP-Activated Protein Kinase (AMPK) Pathway*
dc.typeArticle*
dc.relation.issue19*
dc.relation.volume20*
dc.relation.indexSCIE*
dc.relation.indexSCOPUS*
dc.relation.journaltitleINTERNATIONAL JOURNAL OF MOLECULAR SCIENCES*
dc.identifier.doi10.3390/ijms20194751*
dc.identifier.wosidWOS:000494798300092*
dc.author.googleKim, Nami*
dc.author.googleKang, Mi Sun*
dc.author.googleNam, Miso*
dc.author.googleKim, Shin Ae*
dc.author.googleHwang, Geum-Sook*
dc.author.googleKim, Hyeon Soo*
dc.contributor.scopusid황금숙(7202676099)*
dc.date.modifydate20240222154747*


qrcode

BROWSE