View : 47 Download: 0

Peroxiredoxin5 Controls Vertebrate Ciliogenesis by Modulating Mitochondrial Reactive Oxygen Species

Title
Peroxiredoxin5 Controls Vertebrate Ciliogenesis by Modulating Mitochondrial Reactive Oxygen Species
Authors
Ji Y.Chae S.Lee H.-K.Park I.Kim C.Ismail T.Kim Y.Park J.-W.Kwon O.-S.Kang B.-S.Lee D.-S.Bae J.-S.Kim S.-H.Moon P.-G.Baek M.-C.Park M.-J.Kil I.S.Rhee S.G.Kim J.Huh Y.H.Shin J.-Y.Min K.-J.Kwon T.K.Jang D.G.Woo H.A.Kwon T.Park T.J.Lee H.-S.
Ewha Authors
우현애
SCOPUS Author ID
우현애scopus
Issue Date
2019
Journal Title
Antioxidants and Redox Signaling
ISSN
1523-0864JCR Link
Citation
Antioxidants and Redox Signaling vol. 30, no. 14, pp. 1731 - 1745
Keywords
ciliamitochondriaperoxiredoxin5pyruvate kinaseROS
Publisher
Mary Ann Liebert Inc.
Indexed
SCI; SCIE; SCOPUS scopus
Document Type
Article
Abstract
Aims: Peroxiredoxin5 (Prdx5), a thioredoxin peroxidase, is an antioxidant enzyme that is widely studied for its antioxidant properties and protective roles in neurological and cardiovascular disorders. This study is aimed at investigating the functional significance of Prdx5 in mitochondria and at analyzing its roles in ciliogenesis during the process of vertebrate development. Results: We found that several Prdx genes were strongly expressed in multiciliated cells in developing Xenopus embryos, and their peroxidatic functions were crucial for normal cilia development. Depletion of Prdx5 increased levels of cellular reactive oxygen species (ROS), consequently leading to mitochondrial dysfunction and abnormal cilia formation. Proteomic and transcriptomic approaches revealed that excessive ROS accumulation on Prdx5 depletion subsequently reduced the expression level of pyruvate kinase (PK), a key metabolic enzyme in energy production. We further confirmed that the promotor activity of PK was significantly reduced on Prdx5 depletion and that the reduction in PK expression and its promoter activity led to ciliary defects observed in Prdx5-depleted cells. Innovation: Our data revealed the novel relationship between ROS and Prdx5 and the consequent effects of this interaction on vertebrate ciliogenesis. The normal process of ciliogenesis is interrupted by the Prdx5 depletion, resulting in excessive ROS levels and suggesting cilia as vulnerable targets of ROS. Conclusion: Prdx5 plays protective roles in mitochondria and is critical for normal cilia development by regulating the levels of ROS. The loss of Prdx5 is associated with excessive production of ROS, resulting in mitochondrial dysfunction and aberrant ciliogenesis. © Copyright 2019, Mary Ann Liebert, Inc.
DOI
10.1089/ars.2018.7507
Appears in Collections:
약학대학 > 약학과 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE