View : 819 Download: 211

Enhanced quantum coherence in exchange coupled spins via singlet-triplet transitions

Title
Enhanced quantum coherence in exchange coupled spins via singlet-triplet transitions
Authors
Bae, Y.Yang, K.Willke, P.Choi, T.Heinrich, A. J.Lutz, C. P.
Ewha Authors
Andreas Heinrich최태영
SCOPUS Author ID
Andreas Heinrichscopus; 최태영scopus
Issue Date
2018
Journal Title
SCIENCE ADVANCES
ISSN
2375-2548JCR Link
Citation
SCIENCE ADVANCES vol. 4, no. 11
Publisher
AMER ASSOC ADVANCEMENT SCIENCE
Indexed
SCIE; SCOPUS WOS
Document Type
Article
Abstract
Manipulation of spin states at the single-atom scale underlies spin-based quantum information processing and spintronic devices. These applications require protection of the spin states against quantum decoherence due to interactions with the environment. While a single spin is easily disrupted, a coupled-spin system can resist decoherence by using a subspace of states that is immune to magnetic field fluctuations. Here, we engineered the magnetic interactions between the electron spins of two spin-1/2 atoms to create a "clock transition" and thus enhance their spin coherence. To construct and electrically access the desired spin structures, we use atom manipulation combined with electron spin resonance (ESR) in a scanning tunneling microscope. We show that a two-level system composed of a singlet state and a triplet state is insensitive to local and global magnetic field noise, resulting in much longer spin coherence times compared with individual atoms. Moreover, the spin decoherence resulting from the interaction with tunneling electrons is markedly reduced by a homodyne readout of ESR. These results demonstrate that atomically precise spin structures can be designed and assembled to yield enhanced quantum coherence.
DOI
10.1126/sciadv.aau4159
Appears in Collections:
자연과학대학 > 물리학전공 > Journal papers
Files in This Item:
Enhanced quantum coherence.pdf(818.93 kB) Download
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE