View : 560 Download: 0

Role of Salts in Phase Transformation of Clathrate Hydrates under Brine Environments

Title
Role of Salts in Phase Transformation of Clathrate Hydrates under Brine Environments
Authors
Shin D.Lee J.-W.Woo Y.Cha M.Lee Y.Chae S.A.Kim S.H.Han O.H.Yoon J.-H.
Ewha Authors
한옥희
SCOPUS Author ID
한옥희scopus
Issue Date
2018
Journal Title
ACS Sustainable Chemistry and Engineering
ISSN
2168-0485JCR Link
Citation
ACS Sustainable Chemistry and Engineering vol. 6, no. 4, pp. 5003 - 5010
Keywords
Clathrate hydrateEutectic transitionPhase transformationQuasi-brine layerSalts
Publisher
American Chemical Society
Indexed
SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
Although ion exclusion is a naturally occurring and commonly observed phenomenon in clathrate hydrates, an understanding for the effect of salt ions on the stability of clathrate hydrates is still unclear. Here we report the first observation of phase transformation of structure I and structure II clathrate hydrates using solid-state 13C, 19F, and 23Na magic-angle spinning nuclear magnetic resonance (NMR) spectroscopy, combined with X-ray diffraction and Raman spectroscopy. The phase transformation of clathrate hydrates in salt environments is found to be closely associated with the quadruple point of clathrate hydrate/hydrated salts and the eutectic point of ice/hydrated salts. The formation of the quasi-brine layer (QBL) is triggered at temperatures a little lower than the eutectic point, where an increasing salinity and QBL does not affect the stability of clathrate hydrates. However, at temperatures above the eutectic point, all hydrated salts and the QBL melt completely to form brine solutions, destabilizing the clathrate hydrate structures. Temperature-dependent in situ NMR spectroscopy under pressure also allows us to directly detect the quadruple point of clathrate hydrates in salt environments, which has been determined only by visual observations. © 2018 American Chemical Society.
DOI
10.1021/acssuschemeng.7b04645
Appears in Collections:
자연과학대학 > 화학·나노과학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE