View : 601 Download: 0

Studies on the reuse of waste printed circuit board as an additive for cement mortar

Title
Studies on the reuse of waste printed circuit board as an additive for cement mortar
Authors
Ban B.-C.Song J.-Y.Lim J.-Y.Wang S.-K.An K.-G.Kim D.-S.
Ewha Authors
김동수
SCOPUS Author ID
김동수scopus
Issue Date
2005
Journal Title
Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering
ISSN
1093-4529JCR Link
Citation
Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering vol. 40, no. 3, pp. 645 - 656
Indexed
SCI; SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
The recent development in electronic industries has generated a drastic increase in production of printed circuit boards (PCB). Accordingly, the amount of waste PCB from electronic productions and waste electronics and its environmental impact such as soil and groundwater contamination have become a great concern. This study aims to propose a method for reuse of waste PCB as an additive for cement mortar. Although the expansibility of waste PCB powder finer than 0.08 mm in water was observed to be greater than 2.0%, the maximum expansion rates in water for 0.08-0.15 and 0.15-0.30 mm sized PCB powders were less than 2.0%, which satisfied the necessary condition as an alternative additive for cement mortar in place of sand. The difference in the compressive strength of standard mortar and waste PCB added mortar was observed to be less than 10% and their difference was expected to be smaller after prolonged aging. The durability of waste PCB added cement mortar was also examined through dry/wet conditioning cyclic tests and acidic/alkaline conditioning tests. From the tests, both weight and compressive strength of cement mortar were observed to be recovered with aging. The leaching test for heavy metals from waste PCB added mortar showed that no heavy metal ions such as copper, lead, or cadmium were detected in the leachate, which resulted from fixation effect of the cement hydrates.
DOI
10.1081/ESE-200046618
Appears in Collections:
공과대학 > 환경공학과 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE