View : 119 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.author전인호-
dc.date.accessioned2018-05-02T08:15:38Z-
dc.date.available2018-05-02T08:15:38Z-
dc.date.issued2004-
dc.identifier.issn0378-620X-
dc.identifier.otherOAK-2215-
dc.identifier.urihttp://dspace.ewha.ac.kr/handle/2015.oak/242754-
dc.description.abstractLet B (H) denote the algebra of operators on a complex Hilbert space H, and let u denote the class of operators A ∈ B(H) which satisfy the absolute value condition-
dc.description.abstractA-
dc.description.abstract2 ≤-
dc.description.abstractA2-
dc.description.abstract. It is proved that if A ∈ u is a contraction, then either A has a nontrivial invariant subspace or A is a proper contraction and the nonnegative operator D =-
dc.description.abstract--
dc.description.abstract2 is strongly stable. A Putnam-Fuglede type commutativity theorem is proved for contractions A in U, and it is shown that if normal subspaces of A ∈ U are reducing, then every compact operator in the intersection of the weak closure of the range of the derivation δA(X) = AX - XA with the commutant of A* is quasinilpotent.-
dc.languageEnglish-
dc.titleContractions satisfying the absolute value property-
dc.titleA-
dc.title2 ≤-
dc.titleA2-
dc.typeArticle-
dc.relation.issue2-
dc.relation.volume49-
dc.relation.indexSCI-
dc.relation.indexSCIE-
dc.relation.indexSCOPUS-
dc.relation.startpage141-
dc.relation.lastpage148-
dc.relation.journaltitleIntegral Equations and Operator Theory-
dc.identifier.doi10.1007/s00020-002-1202-z-
dc.identifier.wosidWOS:000222028700001-
dc.identifier.scopusid2-s2.0-2942616536-
dc.author.googleDuggal B.P.-
dc.author.googleJeon I.H.-
dc.author.googleKubrusly C.S.-
dc.date.modifydate20180501154355-
Appears in Collections:
연구기관 > 수리과학연구소 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE