View : 80 Download: 0

Two-stage stationary bootstrapping for bivariate average realized volatility matrix under market microstructure noise and asynchronicity

Title
Two-stage stationary bootstrapping for bivariate average realized volatility matrix under market microstructure noise and asynchronicity
Authors
Hwang, EunjuShin, Dong Wan
Ewha Authors
신동완
SCOPUS Author ID
신동완scopus
Issue Date
2018
Journal Title
JOURNAL OF ECONOMETRICS
ISSN
0304-4076JCR Link

1872-6895JCR Link
Citation
JOURNAL OF ECONOMETRICS vol. 202, no. 2, pp. 178 - 195
Keywords
Market microstructure noiseNon-synchronous tradingRealized covariationsTwo-time scale estimatorStationary bootstrapHigh frequency data
Publisher
ELSEVIER SCIENCE SA
Indexed
SCIE; SSCI; SCOPUS WOS
Document Type
Article
Abstract
Under the two important modern financial market features of noise and non-synchronicity for multiple assets, for consistent estimators of the integrated covariations, we adopt the two-time scale average realized volatility matrix (ARVM) which is a matrix extension of the two-time scale realized volatilities of Zhang et al. (2005). An asymptotic normal theory is provided for the two-time scale ARVM and resulting realized covariations. The asymptotic normality is not directly applicable in practice to construct statistical methods owning to nuisance parameters. To bypass the nuisance parameter problem, two stage stationary bootstrapping is proposed. We establish consistencies of the bootstrap distributions, and construct confidence intervals and hypothesis tests for the integrated covariance, regression coefficient and correlation coefficient. The validity of the stationary bootstrap for the high frequency heterogeneous returns is proved by showing that there exist parameters of the stationary bootstrap blocks so that the bootstrap consistencies hold. The proposed bootstrap methods extend the i.i.d. bootstrapping methods for realized covariations by Dovonon et al. (2013), that are confined to synchronous noise-free sampling. For high frequency noisy asynchronous samples, a Monte-Carlo experiment shows better finite sample performances of the proposed stationary bootstrap methods based on the two-time scale ARVM estimator than the wild blocks of blocks bootstrap methods of Hounyo (2017), based on pre-averaged truncated estimator. (C) 2017 Published by Elsevier B.V.
DOI
10.1016/j.jeconom.2017.10.001
Appears in Collections:
자연과학대학 > 통계학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE