View : 25 Download: 0

Optimization of coupled plasmonic effects for viable phosphorescence of metal-free purely organic phosphor

Title
Optimization of coupled plasmonic effects for viable phosphorescence of metal-free purely organic phosphor
Authors
Wang H.Jung J.Chung K.Lim J.W.You Y.Kim J.Kim D.H.
Ewha Authors
김동하유영민
SCOPUS Author ID
김동하scopus; 유영민scopus
Issue Date
2017
Journal Title
Journal of Applied Physics
ISSN
0021-8979JCR Link
Citation
vol. 122, no. 15
Publisher
American Institute of Physics Inc.
Indexed
SCI; SCIE; SCOPUS scopus
Abstract
Metal-free purely organic phosphorescent molecules are attractive alternatives to organometallic and inorganic counterparts because of their low cost and readily tunable optical properties through a wide chemical design window. However, their weak phosphorescent intensity due to inefficient spin-orbit coupling and, consequently, prevailing non-radiative decay processes limit their practical applicability. Here, we systematically studied phosphorescence emission enhancement of a purely organic phosphor system via plasmon resonance energy transfer. By precisely tuning the distance between purely organic phosphor crystals and plasmonic nanostructures using layer-by-layer assembled polyelectrolyte multilayers as a dielectric spacer, maximum 2.8 and 2.5 times enhancement in photoluminescence intensity was observed when the phosphor crystals were coupled with ∼55 nm AuNPs and ∼7 nm AgNPs, respectively, at the distance of 9.6 nm. When the distance is within the range of 3 nm, a dramatic decrease in phosphorescence intensity was observed, while at a larger distance, the plasmonic effect diminished rapidly. The distance-dependent plasmon-induced phosphorescence enhancement mechanism was further investigated by time-resolved photoluminescence measurements. Our results reveal the correlation between the amplification efficiency and plasmonic band, spatial factor, and spectral characteristics of the purely organic phosphor, which may provide an insightful picture to extend the utility of organic phosphors by using surface plasmon-induced emission enhancement scheme. © 2017 Author(s).
DOI
10.1063/1.4997798
Appears in Collections:
자연과학대학 > 화학·나노과학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE