View : 125 Download: 0

Value at risk forecasting for volatility index

Title
Value at risk forecasting for volatility index
Authors
Park S.-K.Choi J.-E.Shin D.W.
Ewha Authors
신동완
SCOPUS Author ID
신동완scopus
Issue Date
2017
Journal Title
Applied Economics Letters
ISSN
1350-4851JCR Link
Citation
vol. 24, no. 21, pp. 1613 - 1620
Keywords
Conditional heteroscedasticityHAR modellong-memoryskew-t distributionVaRvolatility index
Publisher
Routledge
Indexed
SSCI; SCOPUS scopus
Abstract
Forecasts of values at risk (VaRs) are made for volatility indices such as the VIX for the US S&P 500 index, the VKOSPI for the KOSPI (Korea Stock Price Index) and the OVX (oil volatility index) for crude oil funds, which is the first in the literature. In the forecasts, dominant features of the volatility indices are addressed: long memory, conditional heteroscedasticity, asymmetry and fat-tails. An out-of-sample comparison of the VaR forecasts is made in terms of violation probabilities, showing better performance of the proposed method than several competing methods which consider the features differently from ours. The proposed method is composed of heterogeneous autoregressive model for the mean, GARCH model for the volatility and skew-t distribution for the error. © 2017 Informa UK Limited, trading as Taylor & Francis Group.
DOI
10.1080/13504851.2017.1366631
Appears in Collections:
자연과학대학 > 통계학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE