View : 988 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.advisor윤영대-
dc.contributor.author박미진-
dc.creator박미진-
dc.date.accessioned2017-09-08T09:00:56Z-
dc.date.available2017-09-08T09:00:56Z-
dc.date.issued2012-
dc.identifier.otherOAK-000000072449-
dc.identifier.urihttp://dcollection.ewha.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000072449en_US
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/236795-
dc.description.abstractDuring an immune response, generation of functional memory CD8+ T cells is essential to protect against reinfection with the same pathogen. Despite the significance of memory T cells, the mechanisms for generation and maintenance of memory T cells are not fully understood. In the first part in this thesis, I studied the functions of a protein named as ETRAP (Effector TRAnsmembrane Protein), originally isolated by another member of the lab as a protein that is specifically expressed in effector/memory T cells. ETRAP is a 164 amino acid protein containing a short extracellular domain, followed by a transmembrane domain and a relatively long cytoplasmic domain. mRNA level of etrap is predominantly detected in lymphoid organs and increased in effector and memory T cells. In etrap-/-mice, T cell development, activation and proliferation in response to Ag stimulation were found normal. In addition, differentiation into Th1 and Th2 cells and activation induced cell death were also found normal in etrap-/- mice. However, etrap-/- T cells showed defects at memory stage. After acute infection with LCMV, ETRAP-deficient CD8+ T cells undergo normal primary clonal expansion at day 8 postinfection, but were defective in long-term survival at memory stage. In addition, cytokine secretion by ETRAP-deficient memory CD8+ T cell was also remarkably decreased. Moreover, etrap-/- memory CD8+ T cells responded poorly to IL-7 and IL-15 and after IL-7-mediated survival signaling, etrap-/- memory CD8+ T cells showed the elevated mRNA levels of fas and fas ligand and decreased mRNA levels of bcl-2 and bcl-XL compared to wild type. These findings indicate that ETRAP functions as a positive regulator in maintenance and function of memory CD8+ T cells. In the second part in this thesis, I examined the role of notch in the generation of memory CD8+ T cells. To assess whether notch signaling is involved in the generation or aintenance of memory T cells, DAPT, γ-secretase inhibitor, was employed. Splenocytes rom P14 TCR transgenic mice were adoptively transferred into wild type mice, and a day ater, the recipient mice were infected with LCMV. Subsequently, recipient mice were njected with DAPT 2-3 times/week during day 1-7 post-infection (p.i., expansion phase) r day 8-50 p.i. (contraction phase). Inhibition of notch signaling during expansion phase id not affect the generation and function of effector T cells compared to control group. In contrast, inhibition of notch signaling during contraction phase (day 8-50 p.i.) resulted n the reduction of the frequency of the antigen-specific CD8+ T cells, suggesting that notch signal is required for the survival of CD8+ T cells during contraction phase. However, final frequency and functions of memory CD8+ T cells at day >50 were not affected by inhibition of notch signaling. Taken together, these results show that notch signaling may function as a positive regulator of survival of effector to memory transition process but is not required for the survival of antigen-specific memory CD8+ T cell. In the third part in this thesis, I examined the role of CHD3 in the differentiation of pheripheral CD8+ T cells. Chromatin remodelers of chromodomain helicase DNA-binding (CHD) family play important roles during development and differentiation. One of the members, CHD3, has a chromatin remodeling ATPase activity and were found as a core subunit of Mi-2/NuRD complexes. Here, I found CHD3 (Mi-2α) is predominantly expressed in lymphoid organ, such as lymph node, spleen and thymus. In T cells, CHD3 protein is expressed in naïve and memory T cells but not in effector T cells, suggesting that CHD3 has differentiation-stage-specific functions. Next, in microarray analysis to identify target genes regulated by CHD3, eomes was found upregulated when CHD3 was depleted from Jurkat human T cells. Consistently, upon overexpression of CHD3 by retroviral infection of primary CD8+ T cells, the levels of eomes transcript was downregulated. In addition, in ChIP assay, CHD3 was found to associate with the upstream regions (-2.5~-1.5 Kb, 0.8Kb~TSS) of the promoter of eomes gene. Moreover, the mRNA levels of IFN-γ and granzyme B, two target genes of Eomesodermin, were found to be downregulated in CHD3 overexpressing T cells. Next, in vivo function of CHD3 was studied at animal level. P14 transgenic CD8+ cells infected with retrovirus expressing CHD3 were transferred into wild type recipient mice and 1 day later, recipient mice were infected with LCMV. Subsequently, CHD3-expressing antigen-specific effector CD8+ T cells were purified from the spleen of recipient mice at day 5 postinfection and analyzed for the expression of target genes. In these cells, level of eomes mRNA was found to be downregulated. Moreover, in response to cognate antigen, gp33-41 peptide, CHD3-expressing cells poorly secreted IFN-γ compared to control. Together, these findings establish eomes as the first target gene of CHD3 in CD8+ T lymphocyte and define a novel role of a CHD3-containing repressor complex in transcription control of eomes gene.;면역반응이 일어나는 동안 기능적 memory T 임파구의 생성은 같은 항원에 대한 제어에 필수적이다. memory T 임파구의 중요성에도 불구하고 현재까지 memory T 임파구의 생성과 유지에 대한 조절 기작이 완전하게 알려지지 않았다. 첫 번째 장에서는, 본 연구실에서 처음 분리되었으며 effector와 memory T 임파구에서 특이적으로 발현되는 ETRAP이라 명명된 단백질의 기능을 연구하였다. ETRAP은 164개의 아미노산으로 구성되어 있고, 짧은 세포 외 부분, transmembrane 부분, 그리고 상대적으로 긴 세포질 부분으로 이루어져 있다. etrap의 mRNA level은 lymphoid organ에서 주로 발견되었고, effctor와 memory T 임파구에서 발현이 증가하였다. ETRAP KO 생쥐에서 T 임파구 발달과 항원자극에 대한 활성화, 분열은 정상이었다. 또한 Th1, Th2 임파구로의 분화와 활성화 유도 세포사멸 정도도 정상이었다. 그러나 ETRAP KO T 임파구는 memory stage에서 defect를보였다. acute viral infection후 8일 째 ETRAP T 임파구는 primary clonal expansion은 정상적으로 일어나지만, memory stage에서 오랜 기간 동안 생존하는 정도에서 defect를 보였다. 게다가 ETRAP KO memory T 임파구는 IL-7과 IL-15에 대해 저조하게 반응했고 IL-7를 통한 생존 신호 후, ETRAP KO memory T 임파구는 증가된 fas, fas ligand의 mRNA level과 감소된 bcl-2, bcl-XL의 mRNA level을 보였다. 이러한 결과는 ETRAP 단백질이 memory T 임파구의 유지와 기능에 positive regulator로 작용함을 제시한다. 두 번째 장에서는, Notch signaling이 memory T 세포의 생성에 어떤 역할을 하는지 연구하였다. Notch signaling이 memory T 임파구의 생성과 유지에 관련되어 있는지 확인하기 위해, γ-secretase inhibitor인 DAPT가 사용되었다. P14 TG mice의 splenocytes를 WT mice에 정맥주사하고 다음날 LCMV virus로 감염시켰다. 이어서 recipient mice에 expansion phase 또는 contraction phase동안 일주일에 2-3번 DAPT를 복강주사 하였다. 그 결과, expansion phase 동안 Notch signaling의 억제는 effector T 임파구의 기능과 수에 영향을 주지 않았다. 반면에 contraction phase동안 Notch signaling의 억제는 항원 특이적 CD8 T 임파구 수를 감소시켰다. 이것은 Notch signal이 contraction phase 동안 CD8 T 임파구의 생존에 요구됨을 제시한다. 그러나 감염 50일 이후의 memory T 임파구의 수와 기능에는 차이가 없었다. 이러한 결과는 Notch signaling이 effector to memory transition 과정 동안 T 세포의 생존에서 positive regulator로 역할을 하지만, 항원 특이적 memory T 임파구의 생존에는 요구되지 않음을 알 수 있다. 세 번째 장에서는, peripheral CD8 T 임파구의 분화과정에서 CHD3의 역할을 연구하였다. CHD family는 발달과 분화과정에서 중요한 역할을 하는 것으로 알려져 있고, 이 family의 한 member인 CHD3는 chromatin remodeling ATPase 활성을 가지며 Mi-2/NuRD complex의 core subunit으로 발견되었다. CHD3는 lymph node, spleen, 그리고 thymus와 같은 lymphoid organ에서 주로 발현되고, T 임파구에서는 effector T 임파구가 아닌 naïve, memory T 임파구에서 발현된다. 이를 통해 CHD3 단백질은 분화 단계 특이적인 기능을 가질 것이라 예상할 수 있다. CHD3에 의해 조절되는 target 유전자들을 알아내기 위한 microarray 분석에서, CHD3의 발현이 없어진 JK T 세포주에서 eomes gene이 upregulation됨을 발견하였다. 일관성있게, primary CD8 T 세포에 CHD3를 과발현시켰을 때, eomes transcript이 감소되었다. 게다가 ChIP assay에서 CHD3는 eomes gene의 promoter의 upstream region에 association 하였다. 또한, CHD3가 과발현된 T 임파구에서 eomes의 target genes인 IFN-γ, granzyme B mRNA level이 downregulation됨을 발견하였다. 다음으로 CHD3의 eomes gene regulation에 대한 in vivo 기능을 동물 level에서 연구하였다. P14 TG mice의 CD8 T 세포에 CHD3를 발현하는 retrovirus로 감염한 후 recipient mice에 정맥주사 한 후, 다음날 LCMV virus로 감염시켰다. 감염 5일 후 recipient mice의 spleen으로부터 CHD3를 발현하는 항원 특이적 effector CD8 T 세포를 얻어 target genes의 발현을 분석하였다. 이러한 세포들은 eomes의 mRNA가 감소되었고, gp33-41 peptide로 자극을 주었을 때, CHD3를 발현하는 세포들은 대조군에 비해 IFN-γ를 저조하게 분비하였다. 이러한 결과들은 CD8 T 임파구에서 CHD3의 첫 번째 target gene이 eomes임을 제시하며, eomes gene의 전사조절에 있어서 CHD3를 포함하는 억제 complex의 새로운 역할을 규명 할 수 있다.-
dc.description.tableofcontentsPart I. Characterization of a novel transmembrane protein, ETRAP 1 1. Abstract 2 2. Introduction 3 3. Materials and Methods 7 Plasmids 7 Deglycosylation experiment 7 Isolation of mouse tissues and RNA extraction 7 Mice 8 In vitro T cell activation and differentiation 8 Proliferation and ELISA assay 8 In vitro and in vivo AICD 9 Antibodies and reagents 9 Preparation of H-2Db tetramer 9 In vivo effector and memory generation and sorting 10 Flow cytometry and peptide stimulation 10 Quantitative real-time RT-PCR 10 In vitro killing assay 11 Survival assay 11 4. Results 11 Identification of ETRAP as a protein specifically expressed in effector and memory T cells 11 T cell development is normal in etrap-/- mice 15 T cell activation and differentiation is normal in etrap-/- mice 17 ETRAP is dispensable for AICD (Activation Induced Cell Death) 21 ETRAP is not required for the expansion and function of effector CD8+ T cells 22 etrap-/- memory CD8+ T cells are severely impaired in survival and cytokine secretion, not in cytolytic activity 22 etrap-/- memory T cells are defective in cytokine induced survival response and the increased sensitivity to apoptosis via Fas-Fas ligand interaction 28 5. Discussion 32 Part II. The role of Notch signaling in peripheral T lymphocyte differentiation 34 1. Abstract 35 2. Introduction 36 3. Materials and Methods 42 In vitro effector/memory generation 42 Immunoblot analysis 42 In vivo effector/memory generation and sorting 42 RNA extraction and RT-PCR 42 Flow cytometry and peptide stimulation 43 Chemicals and antibodies 43 Preparation of H-2Db tetramer 43 DAPT treatment schedule 43 4. Results 44 Notch1 activation effector and memory T cell in in vitro and in vivo 44 Inhibition of Notch signaling in effector T cell differentiation 47 Inhibition of Notch signaling in memory T cell differentiation 50 5. Discussion 53 Part III. The role of CHD3, a ATPase subunit of NuRD complex, in peripheral T cell activation 56 1. Abstract 57 2. Introduction 58 3. Materials and Methods 63 Cloning of CHD3 cDNA and plasmids 63 Isolation of proteins from mouse tissue and some cell lines 63 In vitro effector/memory generation 64 Immunoblot analysis 64 RNA extraction and RT-PCR 64 Electroporation and retrovirus infection 65 Flow cytometry 65 LCMV infection 65 Antibodies 65 Chromatin Immunoprecipitation Assay (ChIP) 66 In vitro killing assay 66 4. Results 66 CHD3 expression in mouse tissue and T lymphocytes 66 Eomesodermin, as a target gene of CHD3 in vitro 69 Association of CHD3 with promoter region of eomes and differential histone modification. 73 Eomesodermin, as a in vivo target gene of CHD3 in antigen-specific circumstance 75 5. Discussion 80 Reference 82 논문개요 93 Acknowledgement 95-
dc.formatapplication/pdf-
dc.format.extent3192087 bytes-
dc.languageeng-
dc.publisher이화여자대학교 대학원-
dc.subject.ddc600-
dc.titleRole of ETRAP, CHD3 and Notch signaling in peripheral CD8 T lymphocyte differentiation-
dc.typeDoctoral Thesis-
dc.format.pageix, 95 p.-
dc.identifier.thesisdegreeDoctor-
dc.identifier.major대학원 생명·약학부생명과학전공-
dc.date.awarded2012. 8-
Appears in Collections:
일반대학원 > 생명·약학부 > Theses_Ph.D
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE