View : 102 Download: 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author오세진-
dc.date.accessioned2017-08-28T08:07:56Z-
dc.date.available2017-08-28T08:07:56Z-
dc.date.issued2016-
dc.identifier.issn0021-8693-
dc.identifier.issn1090-266X-
dc.identifier.urihttp://dspace.ewha.ac.kr/handle/2015.oak/234593-
dc.description.abstractWe first provide an explicit combinatorial description of the Auslander-Reiten quiver Gamma(Q) of finite type D. Then we can investigate the categories of finite dimensional representations over the quantum affine algebra U-q'(D-n+1((i))) (i = 1,2) and the quiver Hecke algebra RDn+1, associated to Dn+1 (n >= 3), by using the combinatorial description and the generalized quantum affine Schur-Weyl duality functor. As applications, we can prove that Dorey's rule holds for the category Rep(RDn+1) and prove an interesting difference between multiplicity free positive roots and multiplicity non-free positive roots. (C) 2016 Elsevier Inc. All rights reserved.-
dc.languageEnglish-
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE-
dc.subjectAuslander-Reiten quiver-
dc.subjectQuiver Hecke algebra-
dc.subjectGeneralized quantum affine-
dc.subjectSchur-Weyl duality-
dc.titleAuslander-Reiten quiver of type D and generalized quantum affine Schur-Weyl duality-
dc.typeArticle-
dc.relation.volume460-
dc.relation.indexSCI-
dc.relation.indexSCIE-
dc.relation.indexSCOPUS-
dc.relation.startpage203-
dc.relation.lastpage252-
dc.relation.journaltitleJOURNAL OF ALGEBRA-
dc.identifier.doi10.1016/j.jalgebra.2016.03.043-
dc.identifier.wosidWOS:000378760100008-
dc.identifier.scopusid2-s2.0-84964932840-
dc.author.googleOh, Se-Jin-
dc.contributor.scopusid오세진(55636183200)-
dc.date.modifydate20180501152724-
Appears in Collections:
자연과학대학 > 수학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE