View : 137 Download: 0

The size of the Cochran-Armitage trend test in 2 × C contingency tables

Title
The size of the Cochran-Armitage trend test in 2 × C contingency tables
Authors
Kang S.-H.Lee J.-W.
Ewha Authors
강승호
Issue Date
2007
Journal Title
Journal of Statistical Planning and Inference
ISSN
0378-3758JCR Link
Citation
vol. 137, no. 6, pp. 1851 - 1861
Indexed
SCIE; SCOPUS WOS scopus
Abstract
Although a number of studies showed that the Cochran-Armitage trend test does not preserve the nominal level, it is applied to only small sample cases, because the studies were conducted in small samples by simulation. Little is known about maintenance of the nominal level in infinite samples. Theoretical proof is needed to extend the results in small samples obtained by simulation into those in infinite samples. The purpose of this study is to investigate the sizes and the type I error rates of the Cochran-Armitage trend test, theoretically and numerically. Especially, we showed that the size (the supremum of the type I error rates over the nuisance parameter space) of the Cochran-Armitage trend test in large samples is always greater than or equal to the nominal level. That is, we proved limn {long rightwards arrow} ∞ sup0 < p < 1 h (p, n) ≥ α, where h (p, n) is the type I error rate of the Cochran-Armitage trend test depending on both the sample size n and the nuisance parameter p (common success rate). The essential idea of proof is to investigate the type I error rate when the Poisson approximation to the binomial distribution is more appropriate than the normal approximation. We further showed that the inequality holds strictly in many cases by computing the large-sample lower bounds of the sizes which are strictly greater than the nominal level. Then, the relationship between the large-sample lower bounds and the actual sizes in moderate sample sizes are investigated. Especially, the actual sizes in moderate sample sizes were computed by complete enumeration which does not involve any error. We also examine the properties of the sizes and the patterns of the type I error rates. © 2006 Elsevier B.V. All rights reserved.
DOI
10.1016/j.jspi.2006.03.009
Appears in Collections:
자연과학대학 > 통계학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE