View : 11 Download: 2

Optimal likelihood-ratio multiple testing with application to Alzheimer's disease and questionable dementia Data analysis, statistics and modelling

Title
Optimal likelihood-ratio multiple testing with application to Alzheimer's disease and questionable dementia Data analysis, statistics and modelling
Authors
Lee D.Kang H.Kim E.Lee H.Kim H.Kim Y.K.Lee Y.Lee D.S.
Ewha Authors
이동환
SCOPUS Author ID
이동환scopus
Issue Date
2015
Journal Title
BMC Medical Research Methodology
ISSN
1471-2288JCR Link
Citation
vol. 15, no. 1
Publisher
BioMed Central Ltd.
Indexed
SCIE; SCOPUS WOS scopus
Abstract
Background: Controlling the false discovery rate is important when testing multiple hypotheses. To enhance the detection capability of a false discovery rate control test, we applied the likelihood ratio-based multiple testing method in neuroimage data and compared the performance with the existing methods. Methods: We analysed the performance of the likelihood ratio-based false discovery rate method using simulation data generated under independent assumption, and positron emission tomography data of Alzheimer's disease and questionable dementia. We investigated how well the method detects extensive hypometabolic regions and compared the results to those of the conventional Benjamini Hochberg-false discovery rate method. Results: Our findings show that the likelihood ratio-based false discovery rate method can control the false discovery rate, giving the smallest false non-discovery rate (for a one-sided test) or the smallest expected number of false assignments (for a two-sided test). Even though we assumed independence among voxels, the likelihood ratio-based false discovery rate method detected more extensive hypometabolic regions in 22 patients with Alzheimer's disease, as compared to the 44 normal controls, than did the Benjamini Hochberg-false discovery rate method. The contingency and distribution patterns were consistent with those of previous studies. In 24 questionable dementia patients, the proposed likelihood ratio-based false discovery rate method was able to detect hypometabolism in the medial temporal region. Conclusions: This study showed that the proposed likelihood ratio-based false discovery rate method efficiently identifies extensive hypometabolic regions owing to its increased detection capability and ability to control the false discovery rate. © 2015 Lee et al.; licensee BioMed Central.
DOI
10.1186/1471-2288-15-9
Appears in Collections:
자연과학대학 > 통계학전공 > Journal papers
Files in This Item:
001.pdf(927.68 kB)Download
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE