View : 615 Download: 0

Effect of ethanol on aerobic biodegradation of aromatic compounds

Title
Effect of ethanol on aerobic biodegradation of aromatic compounds
Authors
Lee S.-H.Lee E.-H.Cho K.-S.
Ewha Authors
조경숙이은희
SCOPUS Author ID
조경숙scopus; 이은희scopusscopus
Issue Date
2009
Journal Title
In Situ and On-Site Bioremediation-2009: Proceedings of the 10th International In Situ and On-Site Bioremediation Symposium
Citation
In Situ and On-Site Bioremediation-2009: Proceedings of the 10th International In Situ and On-Site Bioremediation Symposium
Indexed
SCOPUS scopus
Document Type
Conference Paper
Abstract
Ethanol has been used as a fuel oxygenate to improve fuel combustion efficiency and decrease exhaust emissions. In recent years, the usage of gasohol, which has a high content of ethanol mixed with conventional gasoline, has been increasing. Soil and groundwater contamination with the high-ethanol-content gasohol due to leaking storage tanks and accidental spills is an emerging environmental problem. Ethanol can influence the distribution and biodegradation of aromatic compounds such as BTEX (benzene, toluene, ethylbenzene, and xylene) that are gasoline compounds. In this study, the effect of ethanol on the aerobic biodegradation of B, T and E was investigated using a BTEXdegrading bacterium, Rhodococcus sp. EH831. Strain EH831 precultured in B, T, or E was inoculated in a 600-ml serum bottle and sealed with a butyl rubber. B, T, E, and ethanol were injected to the bottles: The final addition amount of B, T, or E was 25, 25, and 20 μmol, respectively, and then ethanol was added to the 1:0, 1:4, and 4(aromatic compound, mole):1(ethanol, mole) ratios. The bottles were incubated at 30C and 180 rpm, and then the concentrations of B, T, and E in the headspace were monitored by gas chromatography. The degradation rates of benzene in the conditions of 1:1, 1:4, and 4:1 mixtures were 5.00±0.37, 3.8±0.2, and 4.5±0.1 μmole·g-dry cell wight-1·h-1, respectively. Although these values were higher or lower than that at the condition without ethanol (4.3±0.1 μmole.g-dry cell wight-1·h-1), there was no statistically difference among these values. The degradation rates of ethylbenzene were from 1.0 to 1.6 μmole·g-dry cell wight-1·h-1 in the presence or absence of ethanol. However, the degradation rate of toluene was 4.41±0.04 μmole·g-dry cell wight-1·h-1 in the 1:4 mixture, and it was lower than that at the condition without ethanol (5.44±0.01 μmole·g-dry cell wight-1·h-1) (p<0.05). Furthermore, the degradation rate of toluene was improved to 6.63±0.06 μmole·g-dry cell wight-1·h-1 when the mixture ratio of ethylbenzene and ethanol was 4:1 (mole : mole) (p<0.05). In conclusion, the biodegradation of toluene was inhibited or stimulated by the co-existence of ethanol, even though the biodegradation of benzene and ethylbenzene was not significantly influenced by ethanol.
ISBN
9780981973012
Appears in Collections:
공과대학 > 환경공학과 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE